Skip to main content
Log in

Object and attribute oriented m-polar fuzzy concept lattice using the projection operator

  • Original Paper
  • Published:
Granular Computing Aims and scope Submit manuscript

Abstract

In the current decade, descriptive analysis of uncertainty existing in m-polar fuzzy attributes is addressed as one of the crucial tasks. To deal with these types of attributes mathematical algebra of m-polar fuzzy graph and its concept lattice representation was introduced recently. In this process, a problem is addressed when an expert wants to discover some useful pattern based on maximal acceptance of m-polar fuzzy attributes (or objects) for solving the particular issue of a given problem. To deal with this problem, the current paper focuses on drawing the object and attribute based m-polar fuzzy concept lattice using the projection operator. One of the suitable examples for the proposed method is also given with illustration of object and attribute based concepts. The analyses obtained from both of the proposed methods are compared with recently available approaches on handling the m-polar fuzzy attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akram M, Younas HR (2017) Certain types of irregular \(m\)-polar fuzzy graphs. J Appl Math Comput 53(1–2):365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Aliev R, Memmedova K (2015) Application of Z–Number based modeling in psychological research. Comput Intell Neurosci. https://doi.org/10.1155/2015/760403 (Article ID 760403)

  • Antoni L, Krajči S, Krídlo O, Macek B, Piskova L (2014) On heterogeneous formal contexts. Fuzzy Sets Syst 234:22–33

    Article  MathSciNet  MATH  Google Scholar 

  • Aswani Kumar C (2012) Knowledge discovery in data using formal concept analysis and random projections. Int J Appl Math Comput Sci 21(4):745–756

    Article  Google Scholar 

  • Bělohlávek R (2004) Concept lattices and order in fuzzy logic. Ann Pure Appl Logic 128(1–3):277–298

    Article  MathSciNet  MATH  Google Scholar 

  • Bělohlávek R, Sklenǎŕ V, Zackpal J (2005) Crisply generated fuzzy concepts. In: International conference on formal concept analysis ICFCA 2005: Formal concept analysis. Springer, Berlin, Heidelberg, pp 269–284. https://doi.org/10.1007/978-3-540-32262-7_19

    Chapter  Google Scholar 

  • Berry A, Sigayret A (2004) Representing concept lattice by a graph. Discr Appl Math 144(1–2):27–42

    Article  MathSciNet  MATH  Google Scholar 

  • Bravo G, Farjam M, Moreno FG, Birukou F, Squazzoni F (2018) Hidden connections: network effects on editorial decisions in four computer science journals. J Informetr 12(1):101–112

    Article  Google Scholar 

  • Burusco Juandeaburre A, Fuentes-González R (1994) The study of the L-fuzzy concept lattice. Math Soft Comput 1(3):209–218

    MathSciNet  MATH  Google Scholar 

  • Chen SM (1996) A fuzzy reasoning approach for rule-based systems based on fuzzy logics. IEEE Trans Syst Man Cybern Part B Cyber 26(5):769–778

    Article  MathSciNet  Google Scholar 

  • Chen SM, Chen CD (2011) Handling forecasting problems based on high-order fuzzy logical relationships. Expert Syst Appl 38(4):3857–3864

    Article  Google Scholar 

  • Chen J, Li S, Ma S, Wang X (2014) m-Polar Fuzzy Sets: An Extension of Bipolar Fuzzy Sets. Sci World J. https://doi.org/10.1155/2014/416530 (Article ID 416530)

  • Chen SM, Lin TE, Lee LW (2014) Group decision making using incomplete fuzzy preference relations based on the additive consistency and the order consistency. Inf Sci 259:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SM, Munif A, Chen GS, Liu HC, Kuo BC (2012) Fuzzy risk analysis based on ranking generalized fuzzy numbers with different left heights and right heights. Expert Syst Appl 39(7):6320–6334

    Article  Google Scholar 

  • Chen SM, Tanuwijaya K (2011) Fuzzy forecasting based on high-order fuzzy logical relationships and automatic clustering techniques. Expert Syst Appl 38(12):15425–15437

    Article  Google Scholar 

  • Chen SM, Wang NY, Pan JS (2009) Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships. Expert Syst Appl 36(8):11070–11076

    Article  Google Scholar 

  • Djouadi Y (2011) Extended Galois derivation operators for information retrieval based on fuzzy formal concept lattice. In: Benferhal S, Goant J (eds) SUM 2011, LNAI, vol 6929. Springer-Verlag, New York, pp 346–358

    Google Scholar 

  • Dubois D, Prade H (2012) Possibility theory and formal concept analysis: characterizing independent sub-contexts. Fuzzy Sets Syst 196:4–16

    Article  MathSciNet  MATH  Google Scholar 

  • Ganter B, Wille R (1999) Formal concept analysis: mathematical foundation. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Ghosh P, Kundu K, Sarkar D (2010) Fuzzy graph representation of a fuzzy concept lattice. Fuzzy Sets Syst 161(12):1669–1675

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar CA, Singh PK (2014) Knowledge representation using formal concept analysis: a study on concept generation. Global trends in knowledge representation and computational intelligence. IGI Global Publishers, Hershey, pp 306–336

    Google Scholar 

  • Lee LW, Chen SM (2015) Fuzzy decision making based on likelihood-based comparison relations of hesitant fuzzy linguistic term sets and hesitant fuzzy linguistic operators. Inf Sci 294:513–529

    Article  MathSciNet  MATH  Google Scholar 

  • Loia V, D’Aniello G, Gaeta A, Orciuoli F (2016) Enforcing situation awareness with granular computing: a systematic overview and new perspectives. Granul Comput 1(2):127–143

    Article  Google Scholar 

  • Macko J (2013) User-friendly fuzzy FCA. Lect Notes Comput Sci 7880:156–171

    Article  MATH  Google Scholar 

  • Medina J, Ojeda-Aciego M (2012) On multi-adjoint concept lattice based on heterogeneous conjunctors. Fuzzy Sets Syst 208:95–110

    Article  MathSciNet  MATH  Google Scholar 

  • Mesiarová-Zemanková A (2015) Multi-polar t-conorms and uninorms. Inf Sci 301:227–240

    Article  MathSciNet  MATH  Google Scholar 

  • Mesiarová-Zemanková A, Ahmad K (2014) Extended multi-polarity and multi-polar-valued fuzzy sets. Fuzzy Sets Syst 234:61–78

    Article  MathSciNet  MATH  Google Scholar 

  • Pandey LK, Ojha KK, Singh PK, Singh CS, Dwivedi S, Bergey EA (2016) Diatoms image database of India (DIDI): a research tool. Environm Tech Innov 5:148–160

    Article  Google Scholar 

  • Pedrycz W, Chen SM (2011) Granular computing and intelligent systems: design with information granules of high order and high type. Springer, Heidelberg

    Book  Google Scholar 

  • Pedrycz W, Chen SM (2015a) Granular computing and decision-making: interactive and iterative approaches. Springer, Heidelberg

    Book  Google Scholar 

  • Pedrycz W, Chen SM (2015b) Information granularity, big data, and computational intelligence. Springer, Heidelberg

    Book  Google Scholar 

  • Pollandt S (1997) Fuzzy begriffe. Springer-Verlag, Berlin-Heidelberg

    Book  MATH  Google Scholar 

  • Samanta S, Akram M, Pal M (2015) m-Step fuzzy competition graphs. J Appl Math Comput 47:461–472

    Article  MathSciNet  MATH  Google Scholar 

  • Sarwar M, Akram M (2017) Novel applications of \(m\)-polar fuzzy concept lattice. New Math Nat Comput 13(3):261–287

    Article  MathSciNet  MATH  Google Scholar 

  • Sebastian S, Ramakrishnan TV (2010) Multi-fuzzy sets. Int Math Forum 5(50):2471–2476

    MathSciNet  MATH  Google Scholar 

  • Sebastian S, Ramakrishnan TV (2011) Multi-fuzzy sets: An extension of fuzzy sets. Fuzzy Inform Eng 3(1):35–43

    Article  MathSciNet  MATH  Google Scholar 

  • Singh PK (2016) Processing linked formal fuzzy contexts using non-commutative composition. Inst Integr Omics Appl Biotechnol (IIOAB) J 7(5):21–32

    Google Scholar 

  • Singh PK (2017a) Three-way fuzzy concept lattice representation using neutrosophic set. Int J Mach Learn Cybernet 8(1):69–79. https://doi.org/10.1007/s13042-016-0585-0

    Article  Google Scholar 

  • Singh PK (2017b) Complex vague set based concept lattice. Chaos Solitons Fractals 96:145–153. https://doi.org/10.1016/j.chaos.2017.01.019

    Article  MATH  Google Scholar 

  • Singh PK (2018a) Interval-valued neutrosophic graph representation of concept lattice and its (\(\alpha, \beta, \gamma\))-decomposition. Arab J Sci Eng 43(2):723–740. https://doi.org/10.1007/s13369-017-2718-5

    Article  Google Scholar 

  • Singh PK (2018b) \(m\)-polar fuzzy graph representation of concept lattice. Eng Appl Artif Intell 67:52–62

    Article  Google Scholar 

  • Singh PK (2018c) Concept lattice visualization of data with \(m\)-polar fuzzy attribute. Granul Comput 3(2):123–137. https://doi.org/10.1007/s41066-017-0060-7

    Article  Google Scholar 

  • Singh PK (2018d) Similar vague concepts selection using their Euclidean distance at different granulation. Cogn Comput 10(2):228–241

    Article  Google Scholar 

  • Singh PK (2018e) Bipolar fuzzy graph representation of concept lattice. Soft Comput 67:52–62. https://doi.org/10.1007/s00500-018-3114-0

    Article  Google Scholar 

  • Singh PK, Aswani Kumar C (2012) A method for reduction of fuzzy relation in fuzzy formal context. Commun Comput Inform Sci 283:343–350

    Article  MathSciNet  Google Scholar 

  • Singh PK, Aswani Kumar C (2014) Bipolar fuzzy graph representation of concept lattice. Inf Sci 288:437–448

    Article  MathSciNet  MATH  Google Scholar 

  • Singh PK, Aswani Kumar C (2015) A note on computing crisp order context of a fuzzy formal context for knowledge reduction. J Inform Process Syst 11(2):184–204

    Google Scholar 

  • Singh PK, Aswani Kumar C (2016) Analysis of composed fuzzy contexts using projection. Int J Data Anal Tech Strateg 8(3):206–219

    Article  Google Scholar 

  • Singh PK, Aswani Kumar C (2017) Concept lattice reduction using different subset of attributes as information granules. Granul Comput 2(3):159–173

    Article  Google Scholar 

  • Wang HY, Chen SM (2008) Evaluating students’ answerscripts using fuzzy numbers associated with degrees of confidence. IEEE Trans Fuzzy Syst 16(2):403–415

    Article  Google Scholar 

  • Wang C, Fu X, Meng S, He Y (2017) Multi-attribute decision-making based on the SPIFGIA operators. Granul Comput 2:321–332

    Article  Google Scholar 

  • Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (ed) Ordered sets, ordered sets, NATO advanced study institutes, vol 83. Springer, New York, pp 445–470

    Google Scholar 

  • Yao YY(2004) A comparative study of formal concept analysis and rough set theory in data analysis. In: Proceedings of 4th international conference on rough sets and current trends in computing 2004, Uppsala, Sweden, pp. 59–68

  • Yao YY (2017a) Interval sets and three-way concept analysis in incomplete contexts. Int J Mach Learn Cybernet 8(1):3–20

    Article  Google Scholar 

  • Yao YY (2017b) A triarchic theory of granular computing. Granul Comput 1(2):145–157

    Article  Google Scholar 

  • Yuan M, Li W, Zhangang L (2009) Projection granular space in formal concept. In: 2009 WRI world congress on software engineering. IEEE, pp 94–98. https://ieeexplore.ieee.org/document/5319704/

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1975) The concepts of a linguistic and application to approximate reasoning. Inf Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (2011) A note on Z-numbers. Inf Sci 181:2923–2932

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous reviewers and the editor for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Kumar Singh.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Funding

Teh author declares that there is no funding for this research and analysis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K. Object and attribute oriented m-polar fuzzy concept lattice using the projection operator. Granul. Comput. 4, 545–558 (2019). https://doi.org/10.1007/s41066-018-0117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41066-018-0117-2

Keywords

Navigation