Skip to main content

Advertisement

Log in

Sea-ice dynamics in an Arctic coastal polynya during the past 6500 years

  • Original Article
  • Published:
arktos

Abstract

The production of high-salinity brines during sea-ice freezing in circum-arctic coastal polynyas is thought to be part of northern deep water formation as it supplies additional dense waters to the Atlantic meridional overturning circulation system. To better predict the effect of possible future summer ice-free conditions in the Arctic Ocean on global climate, it is important to improve our understanding of how climate change has affected sea-ice and brine formation, and thus finally dense water formation during the past. Here, we show temporal coherence between sea-ice conditions in a key Arctic polynya (Storfjorden, Svalbard) and patterns of deep water convection in the neighbouring Nordic Seas over the last 6500 years. A period of frequent sea-ice melting and freezing between 6.5 and 2.8 ka BP coincided with enhanced deep water renewal in the Nordic Seas. Near-permanent sea-ice cover and low brine rejection after 2.8 ka BP likely reduced the overflow of high-salinity shelf waters, concomitant with a gradual slow down of deep water convection in the Nordic Seas, which occurred along with a regional expansion in sea-ice and surface water freshening. The Storfjorden polynya sea-ice factory restarted at ~0.5 ka BP, coincident with renewed deep water penetration to the Arctic and climate amelioration over Svalbard. The identified synergy between Arctic polynya sea-ice conditions and deep water convection during the present interglacial is an indication of the potential consequences for ocean ventilation during states with permanent sea-ice cover or future Arctic ice-free conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aagaard K, Coachman L, Carmack E (1981) On the halocline of the Arctic Ocean. Deep Sea Res Part a Oceanogr Res Pap 28:529–545. doi:10.1016/0198-0149(81)90115-1

    Article  Google Scholar 

  2. Aagaard K, Swift J, Carmack E (1985) Thermohaline circulation in the Arctic Mediterranean Seas. J Geophys Res 90:4833–4846

    Article  Google Scholar 

  3. Alonso-Garcia M, Andrews JT, Belt S, Cabedo-Sanz P, Darby D, Jaeger J (2013) A comparison between multi-proxy and historical data (AD 1990––1840) of drift-ice conditions on the East Greenland shelf (~66°N). The Holocene 23:1872–1883

    Article  Google Scholar 

  4. Bauch HA et al (2001) Chronology of the Holocene transgression at the North Siberian margin. Glob Planet Change 31:125–139

    Article  Google Scholar 

  5. Belt S, Brown TA, Navarro-Rodriguez A, Cabedo-Sanz P, Tonkin A, Ingle R (2012) A reproducible method for the extraction, identification and quantification of the Arctic sea ice proxy IP25 from marine sediments. Anal Methods 4:705–713

    Article  Google Scholar 

  6. Belt S, Müller J (2013) The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quat Sci Rev 79:9–25. doi:10.1016/j.quascirev.2012.12.001

    Article  Google Scholar 

  7. Belt ST, Cabedo-Sanz P, Smik L, Navarro-Rodriguez A, Berben SMP, Knies J, Husum K (2015) Identification of paleo Arctic winter sea ice limits and the marginal ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea ice. Earth Planet Sci Lett 431:127–139. doi:10.1016/j.epsl.2015.09.020

    Article  Google Scholar 

  8. Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27. doi:10.1016/j.orggeochem.2006.09.013

    Article  Google Scholar 

  9. Blaschek M, Renssen H (2013) The impact of early Holocene Arctic shelf flooding on climate in an atmosphere-ocean-sea-ice model. Clim Past 9:2651–2667. doi:10.5194/cp-9-2651-2013

    Article  Google Scholar 

  10. Broecker WS, Peng T-H (1982) Tracers in the sea. Lamont-Doherty Geological Observatory Columbia University, New York

    Google Scholar 

  11. Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic sea ice proxy IP25. Nat Commun. doi:10.1038/ncomms5197

    Google Scholar 

  12. Cabedo-Sanz P, Belt S (2016) Seasonal sea ice variability in eastern Fram Strait over the last 2000 years. Arktos 2:22. doi:10.1007/s41063-41016-40023-41062

    Article  Google Scholar 

  13. Cavalieri DJ, Martin S (1994) The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean. J Geophys Res Oceans 99:18343–18362. doi:10.1029/94jc01169

    Article  Google Scholar 

  14. D’Andrea WJ, Vaillencourt DA, Balascio NL, Werner A, Roof SR, Retelle M, Bradley RS (2012) Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40:1007–1010. doi:10.1130/g33365.1

    Article  Google Scholar 

  15. Dokken TM, Jansen E (1999) Rapid changes in the mechanism of ocean convection during the last glacial period. Nature 401:458–461. doi:10.1038/46753

    Article  Google Scholar 

  16. Eicken H, Reimnitz E, Alexandrov V, Martin T, Kassens H, Viehoff T (1997) Sea-ice processes in the Laptev Sea and their importance for sediment export. Cont Shelf Res 2:205–233

    Article  Google Scholar 

  17. Forwick M, Vorren T (2009) Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeogr Palaeoclimatol Palaeoecol. doi:10.1016/j.palaeo.2009.06.026

    Google Scholar 

  18. Funder S et al. (2011) A 10,000-year record of arctic ocean sea-ice variability-view from the beach. Science 333:747–750. doi:10.1126/science.1202760

  19. Haarpaintner J, Gascard J-C, Haugan PM (2001) Ice production and brine formation in Storfjorden, Svalbard. J Geophys Res 106:14001–14013

    Article  Google Scholar 

  20. Hall I, Bianchi G, Evans J (2004) Centennial to millennial scale Holocene climate–deep water linkage in the North Atlantic. Quat Sci Rev 23:1529–1536

    Article  Google Scholar 

  21. Hölemann JA, Schirmacher M, Kassens H, Prange A (1999) Geochemistry of surficial and ice-rafted sediments from the Laptev Sea (Siberia) Estuarine. Coast Shelf Sci 49:45–59. doi:10.1006/ecss.1999.0485

    Article  Google Scholar 

  22. Jensen H (2000) Resultater av kjemiske analyser av prøver av Svalbard kull og tilgrensende bergarter over, under og mellom kull fløtsene. NGU, Trondheim

    Google Scholar 

  23. Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterization of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanalytical Res 29(3):285–302. doi:10.1111/j.1751-908X.2005.tb00901.x

    Article  Google Scholar 

  24. Jungclaus JH, Backhaus JO, Fohrmann H (1995) Outflow of dense water from the Storfjord in Svalbard: a numerical model study. J Geophys Res Oceans 100:24719–24728. doi:10.1029/95jc02357

    Article  Google Scholar 

  25. Killworth PD (1983) Deep convection in the World Ocean. Rev Geophys 21:1–26. doi:10.1029/RG021i001p00001

    Article  Google Scholar 

  26. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285. doi:10.1051/0004-6361:20041335

    Article  Google Scholar 

  27. Loring DH, Dahle S, Naes K, Dos Santos J, Skei JM, Matishov GG (1998) Arsenic and other trace metals in sediments from the Kara Sea and the Ob and Yenisey Estuaries. Russia Aquat Geochem 4:233–252. doi:10.1023/A:1009691314353

    Article  Google Scholar 

  28. Loring DH, Næs K, Dahle S, Matishov GG, Illin G (1995) Arsenic, trace metals, and organic micro contaminants in sediments from the Pechora Sea, Russia. Mar Geol 128:153–167. doi:10.1016/0025-3227(95)00091-C

    Article  Google Scholar 

  29. Mackensen A, Schmiedl G (2016) Brine formation recorded by stable isotopes of Recent benthic foraminifera in Storfjorden: palaeoceanographical implications. Boreas 45:552–566. doi:10.1111/bor.12174

    Article  Google Scholar 

  30. Müller J, Werner K, Stein R, Fahl K, Moros M, Jansen E (2012) Holocene cooling culminates in sea ice oscillations in Fram Strait. Quat Sci Rev 47:1–14. doi:10.1016/j.quascirev.2012.04.024

    Article  Google Scholar 

  31. Navarro-Rodriguez A, Belt ST, Knies J, Brown TA (2013) Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: implications for palaeo sea ice reconstructions. Quat Sci Rev. doi:10.1016/j.quascirev.2012.11.025

    Google Scholar 

  32. Ottesen RT et al (2010) Geochemical atlas of Norway, Part 2: Geochemical atlas of Spitsbergen. Chemical composition of overbank sediments. Norges geologiske undersøkelse/Norges vassdrags- og energidirektorat, Trondheim

    Google Scholar 

  33. Quadfasel D, Rudels B, Kurz K (1988) Outflow of dense water from a Svalbard fjord into the Fram Strait. Deep Sea Res Part A Oceanogr Res Pap 35:1143–1150. doi:10.1016/0198-0149(88)90006-4

    Article  Google Scholar 

  34. Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat clim change. doi:10.1038/NCLIMATE2554

    Google Scholar 

  35. Rasmussen TL, Thomsen E (2009) Stable isotope signals from brines in the Barents Sea: implications for brine formation during the last glaciation. Geology 37:903–906. doi:10.1130/g25543a.1

    Article  Google Scholar 

  36. Rasmussen TL, Thomsen E (2014) Brine formation in relation to climate changes and ice retreat during the last 15,000 years in Storfjorden, Svalbard, 76–78°N. Paleoceanography 29:911–929. doi:10.1002/2014pa002643

    Article  Google Scholar 

  37. Rasmussen TL, Thomsen E (2015) Palaeoceanographic development in Storfjorden, Svalbard, during the deglaciation and Holocene: evidence from benthic foraminiferal records. Boreas 44:24–44. doi:10.1111/bor.12098

    Article  Google Scholar 

  38. Reigstad M, Carroll J, Slagstad D, Ellingsen I, Wassmann P (2011) Intra-regional comparison of productivity, carbon flux and ecosystem composition within the northern Barents Sea. Prog Oceanogr 90:33–46. doi:10.1016/j.pocean.2011.02.005

    Article  Google Scholar 

  39. Reimann C, Matschullat J, Birke M, Salminen R (2009) Arsenic distribution in the environment: the effects of scale. Appl Geochem 24:1147–1167. doi:10.1016/j.apgeochem.2009.03.013

    Article  Google Scholar 

  40. Reimer PJ et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  41. Renssen H, Goosse H, Muscheler R (2006) Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Clim Past 2:79–90

    Article  Google Scholar 

  42. Sarnthein M, Van Kreveld S, Erlenkeuser H, Grootes PM, Kucera M, Pflaumann U, Schulz M (2003) Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75 degrees N. Boreas 32:447–461. doi:10.1080/03009480310003351

    Article  Google Scholar 

  43. Schauer U (1995) The release of brine-enriched shelf water from Storfjord into the Norwegian Sea. J Geophys Res Oceans 100:16015–16028. doi:10.1029/95jc01184

    Article  Google Scholar 

  44. Semenov VA, Park W, Latif M (2009) Barents Sea inflow shutdown: a new mechanism for rapid climate changes. Geophys Res Lett. doi:1029/2009gl038911

  45. Skogseth R, Haugan PM, Haarpaintner J (2004) Ice and brine production in Storfjorden from four winters of satellite and in situ observations and modeling. J Geophys Res Oceans. doi:10.1029/2004jc002384

    Google Scholar 

  46. Spielhagen RF et al (2011) Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331:450–453. doi:10.1126/science.1197397

    Article  Google Scholar 

  47. Stuiver M, Reimer PJ (1993) Extended C-14 data-base and revised CALIB 3.0 C-14 AGE calibration program. Radiocarbon 35:215–230

    Article  Google Scholar 

  48. Sullivan KA, Aller RC (1996) Diagenetic cycling of arsenic in Amazon shelf sediments. Geochim Cosmochim Acta 60:1465–1477. doi:10.1016/0016-7037(96)00040-3

    Article  Google Scholar 

  49. Tamura T, Ohshima KI (2011) Mapping of sea ice production in the Arctic coastal polynyas. J Geophys Res. doi:10.1029/2010jc006586

    Google Scholar 

  50. Telesiński MM, Bauch HA, Spielhagen RF, Kandiano ES (2015) Evolution of the central Nordic Seas over the last 20 thousand years. Quat Sci Rev 121:98–109

    Article  Google Scholar 

  51. Telesiński MM, Spielhagen RF, Bauch HA (2014) Water mass evolution of the Greenland Sea since late glacial times. Clim Past 10:123–136. doi:10.5194/cp-10-123-2014

    Article  Google Scholar 

  52. Vare L, Massé G, Gregory T, Smart C, Belt S (2009) Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quat Sci Rev 28:1354–1366. doi:10.1016/j.quascirev.2009.01.013

    Article  Google Scholar 

  53. Vinther BM et al (2006) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res. doi:10.1029/2005jd006921

    Google Scholar 

  54. Wedepohl KJ (1991) The composition of the upper earth’s crust and the natural cycles of selected metals. Metals in natural raw materials. Natural resources. In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim, pp 3–17

    Google Scholar 

  55. Werner K, Frank M, Teschner C, Mueller J, Spielhagen RF (2014) Neoglacial change in deep water exchange and increase of sea-ice transport through eastern Fram Strait: evidence from radiogenic isotopes. Quat Sci Rev 92:190–207. doi:10.1016/j.quascirev.2013.06.015

    Article  Google Scholar 

  56. Werner K, Spielhagen RF, Bauch D, Hass HC, Kandiano E (2013) Atlantic water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: multiproxy evidence for a two-phase Holocene. Paleoceanography 28:283–295. doi:10.1002/palo.20028

    Article  Google Scholar 

  57. Werner K, Spielhagen RF, Bauch D, Hass HC, Kandiano E, Zamelczyk K (2011) Atlantic Water advection to the eastern Fram Strait—multiproxy evidence for late Holocene variability. Palaeogeogr Palaeoclimatol Palaeoecol 308:264–276. doi:10.1016/j.palaeo.2011.05.030

    Article  Google Scholar 

  58. Winkelmann D, Knies J (2005) Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. Geochem Geophys Geosyst. doi:10.1029/2005gc000916

    Google Scholar 

  59. Xiao X, Fahl K, Müller J, Stein R (2015) Sea-ice distribution in the modern Arctic Ocean: biomarker records from trans-Arctic Ocean surface sediments. Geochim Cosmochim Acta 155:16–29

    Article  Google Scholar 

  60. Årthun M, Ingvaldsen RB, Smedsrud LH, Schrum C (2011) Dense water formation and circulation in the Barents Sea. Deep Sea Res Part I 58:801–817. doi:10.1016/j.dsr.2011.06.001

    Article  Google Scholar 

Download references

Acknowledgements

This work is a contribution to the CASE Initial Training Network funded by the European Community’s 7th Framework Programme FP7 2007/2013, Marie-Curie Actions, under Grant Agreement No. 238111. The research is part of the Centre for Arctic Gas Hydrate, Environment and Climate and was supported by the Research Council of Norway through its Centres of Excellence funding scheme Grant No. 223259. We thank the reviewers for their help improving the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Knies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knies, J., Pathirana, I., Cabedo-Sanz, P. et al. Sea-ice dynamics in an Arctic coastal polynya during the past 6500 years. Arktos 3, 1 (2017). https://doi.org/10.1007/s41063-016-0027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41063-016-0027-y

Keywords

Navigation