Skip to main content
Log in

Development of supplementary cementitious materials from Algerian kaolin: elaboration of metakaolin and assessment of pozzolanicity

  • Technical papers
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Researches on the use of metakaolin, as a supplementary cementitious material (SCM), are growing worldwide due to its environmental and technical benefits. Metakaolin is usually obtained by calcining kaolinitic clay; however, the thermal cycle of calcination should ensure the optimal kaolin to Metakaolin conversion. This experimental investigation aims to examine the effect of calcination parameters on two Algerian kaolins (KT1 and KT2), used to elaborate Metakaolins. The raw ground materials have undergone various thermal cycles, by varying the target temperature (from 500 to 1000 °C) and the holding time (2, 3 and 5 h). The optimal thermal cycle was checked by assessing the pozzolanic reactivity using mechanical, physical and chemical methods. Results of the various tests were in perfect agreement, and they show that the calcination enhanced pozzolanic reactivity and that the thermal cycle of 800 °C–5 h allowed obtaining the highest pozzolanicity. The treatment of KT1 led to a compressive strength slightly better than that of the control mortar and a lime consumption of 767 mg/g. However, results of the treated KT2 were more important, it recorded an improvement of about 6% in compressive strength and a lime consumption of 843 mg/g. It has been concluded, therefore, that both materials have significant pozzolanic potential and deserve to be valued as SCMs and used in environmentally friendly cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bich C, Ambroise J, Pera J (2009) Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci 44:194–200

    Article  Google Scholar 

  2. Moodi F, Ramezanianpour AA, Ash S (2011) Evaluation of the optimal process of thermal activation of kaolins. Sci Iran A 18(4):906–912

    Article  Google Scholar 

  3. Rashad AM (2013) Metakaolin as cementitious material: history, scours, production and composition, a comprehensive overview. Constr Build Mater 41:303–318

    Article  Google Scholar 

  4. Yanguatin H, Ramírez JH, Tironi A, Tobón JI (2019) Effect of thermal treatment on pozzolanic activity of excavated waste clays. Constr Build Mater 211:814–823

    Article  Google Scholar 

  5. Dang J, Du H, Pang SD (2020) Hydration, strength and microstructure evaluation of eco-friendly mortar containing waste marine clay. J Clean Prod 272:122784

    Article  Google Scholar 

  6. Liu H, Shen T, Li T, Yuan P, Shi G, Bao X (2014) Green synthesis of zeolites from a natural aluminosilicate mineral rectorite: Effects of thermal treatment temperature. Appl Clay Sci 90:53–60

    Article  Google Scholar 

  7. Shvarzman A, Kovler K, Grader GS, Shter GE (2003) The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem Concr Res 33:405–416

    Article  Google Scholar 

  8. Mitrović A, Zdujić M (2014) Preparation of pozzolanic addition by mechanical treatment of kaolin clay. Int J Miner Process 132:59–66

    Article  Google Scholar 

  9. Marfo KK, Dodoo-Arhin D, Agyei-Tuffou B, Nyankson E, Obada DO, Damoah LNW, Annan E, Yaya A, Onwona-Agyemana B, Bediako M (2020) The physico-mechanical influence of dehydroxylized activated local kaolin: a supplementary cementitious material for construction applications. Case Stud Constr Mater 12:e00306

    Google Scholar 

  10. Skibsted J, Snellings R (2019) Reactivity of supplementary cementitious materials (SCMs) in cement. Cem Concr Res 124:105799

    Article  Google Scholar 

  11. Gruber KA, Ramlochan T, Boddy A, Hooton RD, Thomas MDA (2001) Increasing concrete durability with high-reactivity metakaolin. Cement Concr Compos 23:479–484

    Article  Google Scholar 

  12. Badogiannis E, Tsivilis S (2009) Exploitation of poor Greek kaolins: durability of metakaolin concrete. Cement Concr Compos 31:128–133

    Article  Google Scholar 

  13. Zhao D, Khoshnazar R (2020) Microstructure of cement paste incorporating high volume of low-grade metakaolin. Cement Concr Compos 106:103453

    Article  Google Scholar 

  14. Cyr M, Trinh M, Husson B, Casaux-Ginestet G (2014) Effect of cement type on metakaolin efficiency. Cem Concr Res 64:63–72

    Article  Google Scholar 

  15. San Nicolas R, Cyr M, Escadeillas G (2013) Characteristics and applications of flash metakaolins. Appl Clay Sci 83–84:253–262

    Article  Google Scholar 

  16. Donatello S, Tyrer M, Cheeseman CR (2010) Comparison of test methods to assess pozzolanic activity. Cement Concr Compos 32:121–127

    Article  Google Scholar 

  17. Suranenia P, Weissa J (2017) Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis. Cement Concr Compos 83:273–278

    Article  Google Scholar 

  18. Tironi A, Trezza MA, Scian AN, Irassar EF (2013) Assessment of pozzolanic activity of different calcined clays. Cement Concr Compos 37:319–327

    Article  Google Scholar 

  19. Ouellet-Plamondon C, Scherb S, Köberl M, Thienel KC (2020) Acceleration of cement blended with calcined clays. Constr Build Mater 245:118439

    Article  Google Scholar 

  20. Fitos M, Badogiannis EG, Tsivilis SG, Perraki M (2015) Pozzolanic activity of thermally and mechanically treated kaolins of hydrothermal origin. Appl Clay Sci 116–117:182–192

    Article  Google Scholar 

  21. Ismail AH, Kusbiantoro A, Chin SC, Muthusamy K, Islam M, Tee KF (2020) Pozzolanic reactivity and strength activity index of mortar containing palm oil clinker pretreated with hydrochloric acid. J Clean Prod 242:118565

    Article  Google Scholar 

  22. Merabet D, Bekacemi H (2003) Caractérisation minéralogique et chimique du kaolin de Tamazert (Algérie). Ann de Chimie Sci des Matériaux 28:61–83

    Article  Google Scholar 

  23. Brahmi D, Merabet D, Bekacemi H, Mostefaoui TA, Ait Ouakli N (2014) Preparation of amorphous silica gel from Algerian siliceous by-product of kaolin and its physico chemical properties. Ceram Int 40:10499–10503

    Article  Google Scholar 

  24. Sahnoune F, Redaoui D, Fatmi M (2017) Kinetic parameters of Al–Si spinel crystallization from Algerian Tamazarte kaolin. High Temp High Press 46:497–508

    Google Scholar 

  25. Zibouche F, Kerdjoudj H, De Lacaillerie JBD, Van Damme H (2009) Geopolymers from Algerian metakaolin. influence of secondary minerals. Appl Clay Sci 43:453–458

    Article  Google Scholar 

  26. Merabtene M, Kacimi L, Clastres P (2019) Elaboration of geopolymer binders from poor kaolin and dam sludge waste. Helyion 5:e01938

    Article  Google Scholar 

  27. Slimanou H, Bouguermouh K, Bouzidi N (2019) Synthesis of geopolymers based on dredged sediment in calcined and uncalcined states. Mater Lett 251:188–191

    Article  Google Scholar 

  28. Abdelli K, Tahlaiti M, Belarbi R, Oudjit MN (2017) Influence of the pozzolanic reactivity of the blast furnace slag (BFS) and metakaolin on mortars. Energy Procedia 139:224–229

    Article  Google Scholar 

  29. Abdelli K, Tahlaiti M, Belarbi R, Oudjit MN (2017) Influence of the origin of metakaolin on pozzolanic reactivity of mortars. Energy Procedia 139:230–235

    Article  Google Scholar 

  30. Salhi K, Mezghiche B (2017) Evaluation of the mechanical properties and durability of cement mortars containing Algerian Metakaolin. Ceram Silik 61(1):65–73

    Article  Google Scholar 

  31. Mansour MS, Kenai S, Ghrici M, Kadri EH (2011) Properties of mortars with Algerian Metakaolin. In: International conference on durability of building materials and components, Porto-Portugal, Apr 12th–15th

  32. Mansour SM, Abadlia MT, Bekkour K, Messaoudene I (2010) Improvement of rheological behaviour of cement pastes by incorporating metakaolin. Eur J Sci Res 42(3):428–438

    Google Scholar 

  33. Hirono T, Tanikawa W (2011) Implications of the thermal properties and kinetic parameters of dehydroxylation of mica minerals for fault weakening, frictional heating, and earthquake energetic. Earth Planet Sci Lett 307:161–172

    Article  Google Scholar 

  34. Siline M, Ghorbel E, Bibi M (2016) Valorization of pozzolanicity of Algerian clay: optimization of the heat treatment and mechanical characteristics of the involved cement mortars. Appl Clay Sci 132–133:711–721

    Google Scholar 

  35. Dong O, Weiting X, Tommy YL, Janet FCS (2011) Increasing mortar strength with the use of activated kaolin by-products from paper industry. Constr Build Mater 25:1537–1545

    Article  Google Scholar 

  36. Mansour MS, Kadri E, Kenai S, Ghrici M, Bennaceur R (2011) Influence of calcined kaolin on mortar properties. Constr Build Mater 25:2275–2282

    Article  Google Scholar 

  37. Alujas A, Fernandez R, Quintana R, Scrivener KL, Martirena F (2015) Pozzolanic reactivity of low grade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci 108:94–101

    Article  Google Scholar 

  38. Sanou I, Seynou M, Zerbo L, Millogo Y, Ouedraogo R, Sana A (2017) Evaluation of Pozzolanic activity of illitic and lateritic raw materials from Burkina Faso. Chem Sci Int J 18(1):1–13

    Article  Google Scholar 

  39. Liu Y, Lei S, Lin M, Li Y, Ye Z, Fan Y (2017) Assessment of pozzolanic activity of calcined coal-series kaolin. Appl Clay Sci 143:159–167

    Article  Google Scholar 

  40. Avet F, Snellings R, Diaz AA, Ben Haha M, Scrivener K (2016) Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res 85:1–11

    Article  Google Scholar 

  41. Ramezanianpour AA, Bahrami Jovein H (2012) Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Constr Build Mater 30:470–479

    Article  Google Scholar 

  42. Hongjian D, Sze Dai P (2020) High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Constr Build Mater 264:120152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, mix design, material preparation, data collection and analysis.

Corresponding author

Correspondence to Mohammed Siline.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in performing present investigation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehsas, B., Siline, M. & Zeghichi, L. Development of supplementary cementitious materials from Algerian kaolin: elaboration of metakaolin and assessment of pozzolanicity. Innov. Infrastruct. Solut. 6, 50 (2021). https://doi.org/10.1007/s41062-020-00444-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-020-00444-2

Keywords

Navigation