Skip to main content
Log in

Recent Trends in Photocatalytic Enantioselective Reactions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Enantioselective synthesis through photocatalysis is one of the highly preferred approaches towards preparation of optically active compounds. This review elaborates and critically analyzes the different strategies of photocatalytic enantioselective reactions through H-bonding, transition metal catalysis, phase-transfer catalysis (PTC), chiral Lewis acid catalysis, N-heterocyclic carbene catalysis, and amine catalysis, and also explores ion pairs. In addition, it explains the different catalysis modes with multifunctional approaches for enantioselective photocatalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57

Similar content being viewed by others

References

  1. Noyori R (2002) Asymmetric catalysis: science and opportunities (Nobel lecture). Angew Chem Int Ed 41:2008–2022

    Article  CAS  Google Scholar 

  2. Blaser HU, Pugin B, Spindler F (2012) Asymmetric hydrogenation. Top Organomet Chem 42:65–102

    CAS  Google Scholar 

  3. Sharpless KB (2002) Searching for new reactivity (Nobel Lecture). Angew Chem Int Ed 41:2024

    Article  CAS  Google Scholar 

  4. Krendlinger E, Heinrichs FL (2001) Performance enhancers. Polym Paint Colour J 190:22–24

    Google Scholar 

  5. Yoon TP, Jacobsen EN (2003) Privileged chiral catalysts. Science 299:1691–1693

    Article  PubMed  CAS  Google Scholar 

  6. Smith SW (2009) Chiral toxicology: it’s the same thing only different. Toxicol Sci 110:4–30

    Article  PubMed  CAS  Google Scholar 

  7. Grossman RB (1989) Van’t Hoff, Le Bel, and the development of stereochemistry: a reassessment. J Chem Educ 66:30–33

    Article  CAS  Google Scholar 

  8. Kenyon J, Ross WA (1952) A new reaction mechanism for the Marckwald asymmetric synthesis. J Chem Soc (Resumed) 20:2292–2299

    Google Scholar 

  9. Resolution TO (1952) Dalgliesh: the optical resoldion of 756. Opt Resol 20:3940–3942

    Google Scholar 

  10. Trost BM (2004) Asymmetric catalysis: an enabling science. Proc Natl Acad Sci USA 101:5348–5355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hedstrand DM, Kruizinga WH, Kellogg RM (1978) Light induced and dye accelerated reductions of phenacyl onium salts by 1,4-dihydropyridines. Tetrahedron Lett 19:1255–1258

    Article  Google Scholar 

  12. Ischay MA, Anzovino ME, Du J, Yoon TP (2008) Efficient visible light photocatalysis of [2+2] enone cycloadditions. J Am Chem Soc 130:12886–12887

    Article  PubMed  CAS  Google Scholar 

  13. Nicewicz DA, Macmillan DWC (2014) Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 77:5898

    Google Scholar 

  14. Narayanam JMR, Tucker JW, Stephenson CRJ (2009) Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J Am Chem Soc 131:8756–8757

    Article  PubMed  CAS  Google Scholar 

  15. Grimme S, Bach T, Bauer A, Westka F (2005) Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436:1139–1140

    Article  PubMed  Google Scholar 

  16. Albini A, Fagnoni M (2008) 1908: Giacomo Ciamician and the concept of green chemistry. Chem Eur 20:63–66

    Google Scholar 

  17. Albini A, Dichiarante V (2009) The “belle epoque” of photochemistry. Photochem Photobiol Sci 20:248–254

    Article  Google Scholar 

  18. Yu JL, Yu MQ, Jun YX (2022) Efficient splitting of alcohols into hydrogen and C-C coupled products over ultrathin Ni-doped ZnIn2S4 nanosheet photocatalyst. Chin J Catal 43(4):1084–1091

    Article  Google Scholar 

  19. Yu-Lan Wu, Qi M-Y, Tan C-L, Tang Z-R, Yi-Jun Xu (2022) Photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution over CdS/WO3 composites. Chin J Catal 43(7):1851–1859

    Article  Google Scholar 

  20. Li YH, Qi MY, Tang ZR, Xu YJ (2022) Coupling organic synthesis and hydrogen evolution over composite WO3/ZnIn2S4 Z-scheme photocatalyst. J Phys Chem C 126(4):1872–1880

    Article  CAS  Google Scholar 

  21. Li JY, Li YH, Qi MY, Lin Q, Tang ZR (2022) Selective organic transformations over cadmium sulfide-based photocatalyst. ACS Catal 10(11):6262–6280

    Article  Google Scholar 

  22. Yang MQ, Xu YJ (2013) Selective photoredox using graphene based composite photocatalyst. Phys Chem Chem Phys 15:19102–19118

    Article  PubMed  CAS  Google Scholar 

  23. Qi MY, Conte M, Anpo M, Tang ZR, Xu YJ (2021) Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalyst. Chem Rev 121(21):13051–13085

    Article  PubMed  CAS  Google Scholar 

  24. Zhang N, Zhang Y, Yang MQ, Xu YJ (2013) Progress on graphene-based composite photocatalyst for selective organic synthesis. Curr Org Chem 17(21):2503–2515

    Article  CAS  Google Scholar 

  25. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285

    Article  CAS  Google Scholar 

  26. Ahmed S, Rasul MG, Martens WN (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18

    Article  CAS  Google Scholar 

  27. Brimioulle R, Lenhart D, Maturi MM, Bach T (2015) Enantioselective catalysis of photochemical reactions. Angew Chem Int Ed 54:3872–3890

    Article  CAS  Google Scholar 

  28. Wende RC, Schreiner PR (2012) Evolution of asymmetric organocatalysis: multi- and retrocatalysis. Green Chem 14:1821–1849

    Article  CAS  Google Scholar 

  29. Fairlamb IJS (2005) Transition metals in organic synthesis. ChemInform 36:113–148

    Article  Google Scholar 

  30. Mazet C (2012) Privileged chiral ligands and catalysts. Angew Chem Int Ed 51:305–305

    Article  CAS  Google Scholar 

  31. Evans PA (2005) Ruthenium in organic synthesis transition metals for organic synthesis metal-catalyzed cross-coupling reactions modern aldol reactions. Willey, New York, p 56

    Google Scholar 

  32. Dondoni A, Massi A (2008) Asymmetric organocatalysis: from infancy to adolescence. Angew Chem Int Ed 47:4638–4660

    Article  CAS  Google Scholar 

  33. List B (2007) Introduction: organocatalysis. Chem Rev 107:5413–5415

    Article  CAS  Google Scholar 

  34. Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, Krebber A, Wong J, Huisman G, Truesdell S, Lalonde J (2010) Highly enantioselective reduction of a small heterocyclic ketone: biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol. Org Process Res Dev 14:188–192

    Article  CAS  Google Scholar 

  35. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  PubMed  CAS  Google Scholar 

  36. Silvi M, Melchiorre P (2018) Enhancing the potential of enantioselective organocatalysis with light. Nature 554:41–49

    Article  PubMed  CAS  Google Scholar 

  37. Uraguchi D, Kinoshita N, Kizu T, Ooi T (2015) Synergistic catalysis of ionic Brønsted acid and photosensitizer for a redox neutral asymmetric α-coupling of N-arylaminomethanes with aldimines. J Am Chem Soc 137:13768–13771

    Article  PubMed  CAS  Google Scholar 

  38. Li J, Kong M, Qiao B, Lee R, Zhao X, Jiang Z (2018) Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling. Nat Commun 9:1–9

    Google Scholar 

  39. Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC (2015) Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J Am Chem Soc 137:4896–4899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ye CX, Melcamu YY, Li HH, Cheng JT, Zhang TT, Ruan YP, Zheng X, Lu X, Huang PQ (2018) Dual catalysis for enantioselective convergent synthesis of enantiopure vicinal amino alcohols. Nat Commun 9:1–9

    Article  Google Scholar 

  41. Dirocco DA, Rovis T (2012) Catalytic asymmetric ±-acylation of tertiary amines mediated by a dual catalysis mode: N-heterocyclic carbene and photoredox catalysis. J Am Chem Soc 134:8094–8097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Litman ZC, Wang Y, Zhao H, Hartwig JF (2018) Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 560:355–359

    Article  PubMed  CAS  Google Scholar 

  43. Brenninger C, Jolliffe JD, Bach T (2018) Chromophore activation of α, β-unsaturated carbonyl compounds and its application to enantioselective photochemical reactions. Angew Chem Int Ed 57:14338–14349

    Article  CAS  Google Scholar 

  44. David A, Nicewicz MWC (2008) Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 20:322

    Google Scholar 

  45. David A, Scott ME, MacMillan WC (2009) Enantioselective r-trifluoromethylation of aldehydes via photoredox organocatalysis. J Am Chem Sci 131:10875–10877

    Article  Google Scholar 

  46. Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:25

    Article  Google Scholar 

  47. Huong X, Kang MJ, Kim SJ, Park ED, Jang HY (2011) Green organophotocatalysis. TiO2-induced enantioselective a-oxyamination of aldehydes. Catal Sci Technol 1:923–926

    Article  Google Scholar 

  48. Neumann M, Zeitler K (2012) Application of microflow conditions to visible light photoredox catalysis. Org Lett 14(11):2658–2661

    Article  PubMed  CAS  Google Scholar 

  49. Hong BH, Lin CW, Liao WK, Lee GH (2013) Sequential asymmetric catalysis in Michael–Michael–Michael–Aldol reactions: merging organocatalysis with photoredox catalysis in a one-pot enantioselective synthesis of highly functionalized decalines bearing a quaternary carbon stereocenter. Org Lett 20:25

    Google Scholar 

  50. Du J, Skubi KL, Schultz DM, Yoon TP (2014) A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light. Reports 20:344

    Google Scholar 

  51. Gualandi A, Marchini M, Mengozzi L, Natali M, Lucarini M, Ceroni P, Cozzi PG (2015) Organocatalytic enantioselective alkylation of aldehydes with [Fe(bpy)3]Br 2 catalyst and visible light. ACS Catal 15:25

    Google Scholar 

  52. Amador AG, Sherbrook EM, Yoon TP (2016) Enantioselective photocatalytic [3+2] cycloadditions of aryl cyclopropyl ketones. J Am Chem Soc 5:25

    Google Scholar 

  53. Wang D, Zhu N, Chen P, Lin Z, Liu G (2017) Enantioselective decarboxylative cyanation employing cooperative photoredox catalysis and copper catalysis. J Am Chem Soc 5:25

    Google Scholar 

  54. Ye CX, Melcamu YY, Li HH, Cheng JT, Zhang TT, Ruan YP, Zheng X, Xin Lu, Huang PQ (2018) Dual catalysis for enantioselective convergent synthesis of enantiopure vicinal amino alcohols. Communications 20:25

    Google Scholar 

  55. Han B, Li Y, Ying Yu, Gong L (2019) Photocatalytic enantioselective α-aminoalkylationof acyclic imine derivatives by a chiral copper catalyst. Nat Commun 20:25

    Google Scholar 

  56. Crimmins MT, Pace JM, Nantermet PG, Kim-Meade AS, Thomas JB, Watterson SH, Wagman AS (2000) The total synthesis of (±) -Ginkgolide B. J Am Chem Soc 35:8453–8463

    Article  Google Scholar 

  57. Cao S, Hong W, Ye Z, Gong L (2021) Photocatalytic three-component asymmetric sulfonylation via direct C(sp3)-H functionalization. Nat Commun 20:12

    Google Scholar 

  58. Cauble DF, Lynch V, Krische MJ (2003) Studies on the enantioselective catalysis of photochemically promoted transformations: “ Sensitizing Receptors ” as chiral catalysts exist for which catalytic enantioselective variants do not. J Org Chem 68:15–21

    Article  PubMed  CAS  Google Scholar 

  59. Alonso R, Bach T (2014) A chiral thioxanthone as an organocatalyst for enantioselective [2+2] photocycloaddition reactions induced by visible light. Angew Chem Int Ed 53:4368–4371

    Article  CAS  Google Scholar 

  60. Maturi MM, Bach T (2014) Enantioselective catalysis of the intermolecular [2+2] photocycloaddition between 2-pyridones and acetylenedicarboxylates. Angew Chem Int Ed 53:7661–7664

    Article  CAS  Google Scholar 

  61. Tröster A, Alonso R, Bauer A, Bach T (2016) Enantioselective intermolecular [2 + 2] photocycloaddition reactions of 2(1H)-quinolones induced by visible light irradiation. J Am Chem Soc 138:7808–7811

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hölzl-Hobmeier A, Bauer A, Silva AV, Stefan HM, Christoph B, Thorsten B (2018) Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564:240–243

    Article  PubMed  Google Scholar 

  63. Wimberger L, Kratz T, Bach T (2019) Photochemical deracemization of chiral sulfoxides catalyzed by a hydrogen-bonding xanthone sensitizer. Synthesis (Germany) 51:4417–4424

    Article  CAS  Google Scholar 

  64. Vallavoju N, Selvakumar S, Jockusch S (2014) Enantioselective organo-photocatalysis mediated by atropisomeric thiourea derivatives. Angew Chem Int Ed 53:5604–5608

    Article  CAS  Google Scholar 

  65. Skubi KL, Kidd JB, Jung H, Ilia GA, Hyun BM, Tehshik PY (2017) Enantioselective excited-state photoreactions controlled by a chiral hydrogen-bonding iridium sensitizer. J Am Chem Soc 139:17186–17192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Liu Y, Li J, Ye X, Jiang Z (2016) Organocatalytic asymmetric formal arylation of benzofuran-2(3: H)-ones with cooperative visible light photocatalysis. Chem Commun 52:13955–13958

    Article  CAS  Google Scholar 

  67. Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR (2019) Light driven deracemization enabled by excited state electron transfer. Science 366:364–369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ault A, College C, Vernon M (2002) The Nobel prize in chemistry for 2001 from pure enantiomers of natural occurrence, p 79

  69. Tellis JC, Primer DN, Molander GA (2014) Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345:433–436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Zuo Z, Cong H, Li W, Gregory FC, David MWC (2015) Enantioselective decarboxylative arylation of α-amino acids via the merger of photoredox and nickel catalysis. J Am Chem Soc 20:8–11

    Google Scholar 

  71. Stache EE, Rovis T, Doyle AG (2017) Asymmetric synthesis hot paper dual nickel- and photoredox-catalyzed enantioselective desymmetrization of cyclic meso-anhydrides. Communications 56:3679–3683

    CAS  Google Scholar 

  72. Fan P, Lan Y, Zhang C, Wang C (2020) Communication nickel/photo-cocatalyzed asymmetric acyl-carbamoylation of alkenes nickel/photo-cocatalyzed asymmetric acyl-carbamoylation of alkenes. J Am Chem Soc 142:2180–2186

    Article  PubMed  CAS  Google Scholar 

  73. Qandil AM (2012) Prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs), more than meets the eye: a critical review. Int J Mol Sci 13:1744–1774

    Article  Google Scholar 

  74. Guan H, Zhang Q, Walsh PJ, Mao J (2020) Nickel/photoredox-catalyzed asymmetric reductive cross-coupling of racemic a-chloro esters with aryl iodides. Angew Chem Int Ed 57:5172–5177

    Article  Google Scholar 

  75. Wang D, Zhu N, Chen P, Guosheng L (2017) Enantioselective decarboxylative cyanation employing cooperative photoredox catalysis and copper catalysis. J Am Chem Soc 139:15632–15635

    Article  PubMed  CAS  Google Scholar 

  76. Wei Y, Liu J, Chen HW, Lu LQ, Xiao WJ (2017) Sequential visible-light photoactivation and palladium catalysis enabling enantioselective [4 + 2 ] cycloadditions. J Am Chem Soc 139:14707–14713

    Article  PubMed  Google Scholar 

  77. Zhang H, Zhao J, Yu S (2018) Enantioselective Allylic Alkylation with 4-Alkyl-1,4-dihydro-pyridines Enabled by Photoredox/Palladium Cocatalysis. J Am Chem Soc 140:16914–16919

    Article  PubMed  CAS  Google Scholar 

  78. Harunobu M, Shun T, Hiromu F, Kei O, Motomu K (2019) Catalytic asymmetric allylation of aldehydes with alkenes through allylic C(sp3)-H functionalization mediated by organophotoredox and chiral chromium hybrid catalysis. Chem Sci 10:3459–3465

    Article  Google Scholar 

  79. Rand AW, Yin H, Xu L, Jessica G, Montero M, Ciro RR, John M, Ruben M (2020) A dual catalytic platform for enabling sp3 a C–H arylation & alkylation of benzamides. ACS Catal 10:4671–4676

    Article  CAS  Google Scholar 

  80. Biegasiewicz KF, Cooper SJ, Emmanuel MA, Todd HK (2018) Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nat Chem 10:770–775

    Article  PubMed  CAS  Google Scholar 

  81. Lu FY, Chen YJ, Chen Y, Hong YH (2020) Highly enantioselective electrosynthesis of C2-quaternary indolin-3-ones. Chem Commun 56:623–626

    Article  CAS  Google Scholar 

  82. Betori RC, May CM, Scheidt KA (2019) Combined photoredox/enzymatic C−H benzylic hydroxylations. Angew Chem Int Ed 58:16490–16494

    Article  CAS  Google Scholar 

  83. Emmanuel MA, Greenberg NR, Oblinsky DG, Hyster TK (2016) Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540:414–417

    Article  PubMed  CAS  Google Scholar 

  84. Biegasiewicz KF, Cooper SJ, Gao X (2019) Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364:1166–1169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Guo X, Okamoto Y, Schreier MR, Mirjam RS, Oliver SW (2018) Enantioselective synthesis of amines by combining photoredox and enzymatic catalysis in a cyclic reaction network. Chem Sci 9:5052–5056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Luján AP, Bhat MF, Saravanan T, Poelarends GJ (2022) Chemo- and enantioselective photoenzymatic ketone reductions using a promiscuous flavin-dependent nitroreductase. ChemCatChem 202200043:1–6

    Google Scholar 

  87. Lian M, Li Z, Cai Y, Meng Q, Gao PZ (2012) Enantioselective photooxygenation of b-keto esters by chiral phase-transfer catalysis using molecular oxygen. Asian J 20:1–6

    Google Scholar 

  88. Woźniak L, Murphy JJ, Melchiorre P (2015) Communication Photo-organocatalytic enantioselective perfluoroalkylation of β-ketoesters. J Am Chem Soc 137:5678–5681

    Article  PubMed  PubMed Central  Google Scholar 

  89. Espelt LR, Mcpherson IS, Wiensch EM, Yoon TP (2014) Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and lewis acid catalysis. J Am Chem Soc 137:2452–2455

    Article  Google Scholar 

  90. Blum TR, Miller ZD, Bates DM, Yoon TP (2016) Energy transfer. Science 354:1391–1396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Amador AG, Yoon TP (2016) A chiral metal photocatalyst architecture for highly enantioselective photoreactions. Angew Chem Int Ed 55(7):2304–2306

    Article  CAS  Google Scholar 

  92. Huang X, Webster RD, Harms K, Meggers E (2016) Asymmetric catalysis with organic azides and diazo compounds initiated by photoinduced electron transfer asymmetric catalysis with organic azides and diazo compounds initiated by photoinduced electron transfer. J Am Chem Soc 138(38):12636–12642

    Article  PubMed  CAS  Google Scholar 

  93. Li C, Cao Y-X, Jin R, Bian K-J, Qin Z-Y, Lan Q, Wang X-S (2019) Highly stereoselective nickel-catalyzed difluoroalkylation of aryl ketones to tetrasubstituted monofluoroalkenes and quaternary alkyl difluorides. Chem Sci 10:9285–9251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Liu J, Ding W, Zhou Q (2017) Enantioselective di-/per fl uoroalkylation of β-ketoesters enabled by cooperative photoredox/nickel catalysis. ACS Organ Lett 20:7–10

    Google Scholar 

  95. Giles AC, Rankin CH, Kerr RA, Yoon TP (2014) A dual-catalysis approach to enantioselective. Science 344:392–396

    Article  Google Scholar 

  96. Huo H, Harms K, Meggers E (2016) Catalytic, enantioselective addition of alkyl radicals to alkenes via visible-light-activated photoredox catalysis with a chiral rhodium complex catalytic, enantioselective addition of alkyl radicals to alkenes via visible-light-activated photoredox. J Am Chem Sci 138(22):6936–6939

    Article  CAS  Google Scholar 

  97. Liang H, Xu G, Feng Z, Peng FX (2018) Dual catalytic switchable divergent synthesis: an asymmetric visible-light photocatalytic approach to fluorine-containing keto acid frameworks. J Org Chem 84(1):60–72

    Article  PubMed  Google Scholar 

  98. Kuang Y, Wang K, Shi X, Eric M, Jie W (2019) Dual catalysis asymmetric synthesis of 1,4-dicarbonyl compounds from aldehydes by hydrogen atom transfer photocatalysis and chiral lewis acid catalysis. Angew Chem Int Ed 20:1–6

    Google Scholar 

  99. Uchikura T, Kamiyama N, Mouri T, Akiyama T (2022) Visible-light driven enantioselective radical addition to imines enabled by excitation of chiral phosphoric acid-imine complex. Chem Rexiv 20:1–5

    Google Scholar 

  100. Article E, Lathrop SP, Rovis T (2013) A photoisomerization-coupled asymmetric Stetter reaction: application to the total synthesis of three. Chem Sci 20:838

    Google Scholar 

  101. Yang Q, Zhang L, Ye C, Li WZ (2017) Visible-light-promoted asymmetric cross-dehydrogenative coupling of tertiary amines to ketones by synergistic multiple catalysis. Angew Chem Int Ed 56:3694–3698

    Article  CAS  Google Scholar 

  102. Zhu Y, Zhang L, Luo S (2014) Asymmetric α-photoalkylation of β-ketocarbonyls by primary amine catalysis: facile access to acyclic all-carbon quaternary stereocenters. J Am Chem Soc 136(42):14642–14645

    Article  PubMed  CAS  Google Scholar 

  103. Larionov E, Mastandrea MM, Pericàs MA, Mquel A (2017) Asymmetric visible-light photoredox cross-dehydrogenative coupling of aldehydes with xanthenes asymmetric visible-light photoredox cross-dehydrogenative coupling of aldehydes with xanthenes. ACS Catal 20:7008–7013

    Article  Google Scholar 

  104. Hou H, Zhu S, Atodiresei I, Rueping M (2018) Asymmetric organocatalysis and photoredox catalysis for the α-functionalization of tetrahydroisoquinolines. Eur J Organ Chem 20:1277–1280

    Article  Google Scholar 

  105. Arceo E, Jurberg I, Álvarez-Fernández A et al (2013) Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nat Chem 5(9):750–756

    Article  PubMed  CAS  Google Scholar 

  106. Yang Z, Li H, Li S, Zhang MT, Luo S (2017) A chiral ion-pair photoredox organocatalyst: enantioselective anti-Markovnikov hydroetherification of alkenols. Org Chem Front 4:1037–1041

    Article  CAS  Google Scholar 

  107. Gentry EC, Rono LJ, Hale ME, Knowles RR (2018) Enantioselective synthesis of pyrroloindolines via noncovalent stabilization of indole radical cations and applications to the synthesis of alkaloid natural products. J Am Chem Soc 140(9):3394–3402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Morse PD, Nguyen TM, Cruz CL, Nicewicz DA (2018) Enantioselective counter-anions in photoredox catalysis: the asymmetric cation radical Diels–Alder reaction. Tetrahedron 74:3266–3272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmohan Singh Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R., Jindal, P., Prasad, J. et al. Recent Trends in Photocatalytic Enantioselective Reactions. Top Curr Chem (Z) 380, 48 (2022). https://doi.org/10.1007/s41061-022-00402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00402-9

Keywords

Navigation