Skip to main content
Log in

Ensemble Density Functional Theory of Neutral and Charged Excitations

Exact Formulations, Standard Approximations, and Open Questions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Recent progress in the field of (time-independent) ensemble density-functional theory (DFT) for excited states are reviewed. Both Gross–Oliveira–Kohn (GOK) and N-centered ensemble formalisms, which are mathematically very similar and allow for an in-principle-exact description of neutral and charged electronic excitations, respectively, are discussed. Key exact results, for example, the equivalence between the infamous derivative discontinuity problem and the description of weight dependencies in the ensemble exchange-correlation density functional, are highlighted. The variational evaluation of orbital-dependent ensemble Hartree-exchange (Hx) energies is discussed in detail. We show in passing that state-averaging individual exact Hx energies can lead to severe (although solvable) v-representability issues. Finally, we explore the possibility of using the concept of density-driven correlation, which has been introduced recently and does not exist in regular ground-state DFT, for improving state-of-the-art correlation density-functional approximations for ensembles. The present review reflects the efforts of a growing community to turn ensemble DFT into a rigorous and reliable low-cost computational method for excited states. We hope that, in the near future, this contribution will stimulate new formal and practical developments in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kohn W, Sham L (1965) Phys Rev A 140:1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  2. Bredas JL (2014) Mater Horizons 1(1):17

    Article  CAS  Google Scholar 

  3. Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Phys Rev Lett 49(23):1691. https://doi.org/10.1103/PhysRevLett.49.1691

    Article  CAS  Google Scholar 

  4. Cohen AJ, Mori-Sánchez P, Yang W (2011) Chem Rev 112(1):289. https://doi.org/10.1021/cr200107z

    Article  CAS  PubMed  Google Scholar 

  5. Mori-Sánchez P, Cohen AJ, Yang W (2008) Phys Rev Lett 100(14):146401

    Article  Google Scholar 

  6. Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321(5890):792

    Article  CAS  Google Scholar 

  7. Cohen AJ, Mori-Sánchez P, Yang W (2008) Phys Rev B 77(11):115123. https://doi.org/10.1103/PhysRevB.77.115123

    Article  CAS  Google Scholar 

  8. Stein T, Eisenberg H, Kronik L, Baer R (2010) Phys Rev Lett 105(26):266802

    Article  Google Scholar 

  9. Zheng X, Cohen AJ, Mori-Sánchez P, Hu X, Yang W (2011) Phys Rev Lett 107(2):026403. https://doi.org/10.1103/PhysRevLett.107.026403

    Article  CAS  PubMed  Google Scholar 

  10. Perdew JP, Yang W, Burke K, Yang Z, Gross EKU, Scheffler M, Scuseria GE, Henderson TM, Zhang IY, Ruzsinszky A et al (2017) Proc Natl Acad Sci USA 114(11):2801

    Article  CAS  Google Scholar 

  11. Imamura Y, Kobayashi R, Nakai H (2011) J Chem Phys 134(12):124113. https://doi.org/10.1063/1.3569030

    Article  CAS  PubMed  Google Scholar 

  12. Atalla V, Zhang IY, Hofmann OT, Ren X, Rinke P, Scheffler M (2016) Phys Rev B 94(3):035140. https://doi.org/10.1103/PhysRevB.94.035140

    Article  CAS  Google Scholar 

  13. Stein T, Autschbach J, Govind N, Kronik L, Baer R (2012) J Chem Phys Lett 3(24):3740. https://doi.org/10.1021/jz3015937

    Article  CAS  Google Scholar 

  14. Onida G, Reining L, Rubio A (2002) Rev Mod Phys 74(2):601. https://doi.org/10.1103/RevModPhys.74.601

    Article  CAS  Google Scholar 

  15. Sottile F, Marsili M, Olevano V, Reining L (2007) Phys Rev B 76(16):161103

    Article  Google Scholar 

  16. Bruneval F (2012) J Chem Phys 136(19):194107

    Article  Google Scholar 

  17. Bruneval F, Marques MA (2012) J Chem Theory Comput 9(1):324

    Article  Google Scholar 

  18. Jiang H (2015) Int J Quantum Chem 115(11):722

    Article  CAS  Google Scholar 

  19. Pacchioni G (2015) Catal Lett 145(1):80

    Article  CAS  Google Scholar 

  20. Ou Q, Subotnik JE (2016) J Phys Chem A 120(26):4514

    Article  CAS  Google Scholar 

  21. Reining L (2018) WIREs Comput Mol Sci 8(3):e1344. https://doi.org/10.1002/wcms.1344

    Article  CAS  Google Scholar 

  22. Runge E, Gross EK (1984) Phys Rev Lett 52(12):997

    Article  CAS  Google Scholar 

  23. Casida M, Huix-Rotllant M (2012) Annu Rev Phys Chem 63:287

    Article  CAS  Google Scholar 

  24. Vignale G (2008) Phys Rev A 77:062511

    Article  Google Scholar 

  25. Vignale G (2011) Phys Rev A 83:046501

    Article  Google Scholar 

  26. Fromager E, Knecht S, Aa Jensen HJ (2013) J Chem Phys 138:084101

    Article  Google Scholar 

  27. Fuks JI, Maitra NT (2014) Phys Chem Chem Phys 16(28):14504. https://doi.org/10.1039/C4CP00118D

    Article  CAS  PubMed  Google Scholar 

  28. Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126(12):4007

    Article  CAS  Google Scholar 

  29. Maitra NT (2021) arXiv:2107.05600

  30. Maitra NT, Zhang F, Cave RJ, Burke K (2004) J Chem Phys 120:5932

    Article  CAS  Google Scholar 

  31. Filatov M, Lee S, Choi CH (2020) J Chem Theory Comput 16(7):4489. https://doi.org/10.1021/acs.jctc.0c00218

    Article  CAS  PubMed  Google Scholar 

  32. Filatov M, Lee S, Nakata H, Choi CH (2020) J Phys Chem A 124(38):7795

    Article  CAS  Google Scholar 

  33. Chan GKL (1999) J Chem Phys 110(10):4710. https://doi.org/10.1063/1.478357

    Article  CAS  Google Scholar 

  34. Kraisler E, Kronik L (2013) Phys Rev Lett 110(12):126403. https://doi.org/10.1103/PhysRevLett.110.126403

    Article  CAS  PubMed  Google Scholar 

  35. Gould T, Toulouse J (2014) Phys Rev A 90(5):050502. https://doi.org/10.1103/PhysRevA.90.050502

    Article  CAS  Google Scholar 

  36. Kraisler E, Kronik L (2014) J Chem Phys 140(18):18A540

    Article  Google Scholar 

  37. Kraisler E, Kronik L (2015) Phys Rev A 91(3):032504

    Article  Google Scholar 

  38. Kraisler E, Schmidt T, Kümmel S, Kronik L (2015) J Chem Phys 143(10):104105

    Article  Google Scholar 

  39. Li C, Zheng X, Cohen AJ, Mori-Sánchez P, Yang W (2015) Phys Rev Lett 114(5):053001. https://doi.org/10.1103/PhysRevLett.114.053001

    Article  CAS  PubMed  Google Scholar 

  40. Li C, Lu J, Yang W (2017) J Chem Phys 146(21):214109. https://doi.org/10.1063/1.4982951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Görling A (2015) Phys Rev B 91(24):245120. https://doi.org/10.1103/PhysRevB.91.245120

    Article  CAS  Google Scholar 

  42. Baerends EJ (2017) Phys Chem Chem Phys 19(24):15639. https://doi.org/10.1039/C7CP02123B

    Article  CAS  PubMed  Google Scholar 

  43. Görling A (1999) Phys Rev A 59(5):3359. https://doi.org/10.1103/PhysRevA.59.3359

    Article  Google Scholar 

  44. Levy M, Nagy A (1999) Phys Rev Lett 83(21):4361. https://doi.org/10.1103/PhysRevLett.83.4361

    Article  CAS  Google Scholar 

  45. Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta 43(3):261

    Article  CAS  Google Scholar 

  46. Gavnholt J, Olsen T, Engelund M, Schiøtz J (2008) Phys Rev B 78(7):075441. https://doi.org/10.1103/PhysRevB.78.075441

    Article  CAS  Google Scholar 

  47. Kowalczyk T, Yost SR, Voorhis TV (2011) J Chem Phys 134(5):054128. https://doi.org/10.1063/1.3530801

    Article  CAS  PubMed  Google Scholar 

  48. Levi G, Ivanov AV, Jónsson H (2020) J Chem Theory Comput 16(11):6968. https://doi.org/10.1021/acs.jctc.0c00597

    Article  CAS  PubMed  Google Scholar 

  49. Hait D, Head-Gordon M (2020) J Chem Theory Comput 16(3):1699. https://doi.org/10.1021/acs.jctc.9b01127

    Article  CAS  PubMed  Google Scholar 

  50. Carter-Fenk K, Herbert JM (2020) J Chem Theory Comput 16(8):5067. https://doi.org/10.1021/acs.jctc.0c00502

    Article  CAS  PubMed  Google Scholar 

  51. Gilbert ATB, Besley NA, Gill PMW (2008) J Phys Chem A 112(50):13164. https://doi.org/10.1021/jp801738f

    Article  CAS  PubMed  Google Scholar 

  52. Ivanov AV, Levi G, Jónsson EO, Jónsson H (2021) J Chem Theory Comput https://doi.org/10.1021/acs.jctc.1c00157

  53. Evangelista FA, Shushkov P, Tully JC (2013) J Phys Chem A 117(32):7378. https://doi.org/10.1021/jp401323d

    Article  CAS  PubMed  Google Scholar 

  54. Ramos P, Pavanello M (2018) J Chem Phys 148(14):144103. https://doi.org/10.1063/1.5018615

    Article  CAS  PubMed  Google Scholar 

  55. Roychoudhury S, Sanvito S, O’Regan DD (2020) Sci Rep 10(1):1. https://doi.org/10.1038/s41598-020-65209-4

  56. Karpinski N, Ramos P, Pavanello M (2020) Phys Rev A 101(3):032510. https://doi.org/10.1103/PhysRevA.101.032510

    Article  CAS  Google Scholar 

  57. Ziegler T, Seth M, Krykunov M, Autschbach J, Wang F (2009) J Chem Phys 130(15):154102. https://doi.org/10.1063/1.3114988

    Article  CAS  PubMed  Google Scholar 

  58. Cullen J, Krykunov M, Ziegler T (2011) Chem Phys 391(1):11. https://doi.org/10.1016/j.chemphys.2011.05.021

    Article  CAS  Google Scholar 

  59. Ziegler T, Krykunov M, Cullen J (2012) J Chem Phys 136(12):124107. https://doi.org/10.1063/1.3696967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krykunov M, Ziegler T (2013) J Chem Theory Comput 9(6):2761. https://doi.org/10.1021/ct300891k

  61. Park YC, Senn F, Krykunov M, Ziegler T (2016) J Chem Theory Comput 12(11):5438. https://doi.org/10.1021/acs.jctc.6b00333

    Article  CAS  PubMed  Google Scholar 

  62. Ayers PW, Levy M, Nagy A (2012) Phys Rev A 85(4):042518. https://doi.org/10.1103/PhysRevA.85.042518

  63. Ayers P, Levy M, Nagy A (2015) J Chem Phys 143(19):191101. https://doi.org/10.1063/1.4934963

    Article  CAS  PubMed  Google Scholar 

  64. Glushkov V, Levy M (2016) Computation 4(3):28. https://www.mdpi.com/2079-3197/4/3/28

  65. Ayers P, Levy M, Nagy Á (2018) Theor Chem Acc 137(11):152. https://doi.org/10.1007/s00214-018-2352-7

  66. Lieb EH (1983) Int J Quantum Chem 24(3):243

    Article  CAS  Google Scholar 

  67. Ullrich CA, Kohn W (2001) Phys Rev Lett 87:093001. https://doi.org/10.1103/PhysRevLett.87.093001

    Article  CAS  PubMed  Google Scholar 

  68. Yang W, Zhang Y, Ayers PW (2000) Phys Rev Lett 84:5172. https://doi.org/10.1103/PhysRevLett.84.5172

    Article  CAS  PubMed  Google Scholar 

  69. Filatov M, Shaik S (1999) Chem Phys Lett 304(5–6):429. https://doi.org/10.1016/S0009-2614(99)00336-X

    Article  CAS  Google Scholar 

  70. Kazaryan A, Heuver J, Filatov M (2008) J Phys Chem A 112(50):12980. https://doi.org/10.1021/jp8033837

    Article  CAS  PubMed  Google Scholar 

  71. Filatov M (2015) WIREs Comput Mol Sci 5:146. https://doi.org/10.1002/wcms.1209

    Article  CAS  Google Scholar 

  72. Filatov M, Huix-Rotllant M, Burghardt I (2015) J Chem Phys 142:184104

    Article  Google Scholar 

  73. Filatov M, Liu F, Martínez TJ (2017) J Chem Phys 147(3):034113. https://doi.org/10.1063/1.4994542

    Article  CAS  PubMed  Google Scholar 

  74. Liu F, Filatov M, Martínez TJ (2021) J Chem Phys 154(10):104108. https://doi.org/10.1063/5.0041389

    Article  CAS  PubMed  Google Scholar 

  75. Filatov M, Lee S, Choi CH (2021) J Chem Theory Comput 17(8):5123. https://doi.org/10.1021/acs.jctc.1c00479

    Article  CAS  PubMed  Google Scholar 

  76. Pittalis S, Proetto CR, Floris A, Sanna A, Bersier C, Burke K, Gross EKU (2011) Phys Rev Lett 107:163001. https://doi.org/10.1103/PhysRevLett.107.163001

    Article  CAS  PubMed  Google Scholar 

  77. Pribram-Jones A, Burke K (2016) Phys Rev B 93:205140. https://doi.org/10.1103/PhysRevB.93.205140

    Article  CAS  Google Scholar 

  78. Pastorczak E, Gidopoulos NI, Pernal K (2013) Phys Rev A 87(6):062501. https://doi.org/10.1103/PhysRevA.87.062501

    Article  CAS  Google Scholar 

  79. Marut C, Senjean B, Fromager E, Loos PF (2020) Faraday Discuss 224:402. https://doi.org/10.1039/D0FD00059K

    Article  CAS  PubMed  Google Scholar 

  80. Gould T, Kronik L, Pittalis S (2021) Phys Rev A 104:022803. https://doi.org/10.1103/PhysRevA.104.022803

    Article  CAS  Google Scholar 

  81. Gross EKU, Oliveira LN, Kohn W (1988) Phys Rev A 37:2805. https://doi.org/10.1103/PhysRevA.37.2805

    Article  CAS  Google Scholar 

  82. Gross EKU, Oliveira LN, Kohn W (1988) Phys Rev A 37:2809. https://doi.org/10.1103/PhysRevA.37.2809

    Article  CAS  Google Scholar 

  83. Senjean B, Fromager E (2018) Phys Rev A 98(2):022513. https://doi.org/10.1103/PhysRevA.98.022513

    Article  CAS  Google Scholar 

  84. Carrascal DJ, Ferrer J, Smith JC, Burke K (2015) J Phys Condens Matter 27(39):393001. http://stacks.iop.org/0953-8984/27/i=39/a=393001

  85. Carrascal D, Ferrer J, Smith J, Burke K (2016) J Phys Condens Matter 29(1):019501

    Article  Google Scholar 

  86. Gould T, Pittalis S (2019) Phys Rev Lett 123(1):016401. https://doi.org/10.1103/PhysRevLett.123.016401

    Article  CAS  PubMed  Google Scholar 

  87. Yang Zh, Pribram-Jones A, Burke K, Ullrich CA (2017) Phys Rev Lett 119(3):033003. https://doi.org/10.1103/PhysRevLett.119.033003

    Article  PubMed  Google Scholar 

  88. Oliveira LN, Gross EKU, Kohn W (1988) Phys Rev A 37(8):2821

    Article  CAS  Google Scholar 

  89. Theophilou AK (1979) J Phys C Solid State Phys 12(24):5419. https://doi.org/10.1088/0022-3719/12/24/013

    Article  CAS  Google Scholar 

  90. Deur K, Fromager E (2019) J Chem Phys 150(9):094106. https://doi.org/10.1063/1.5084312

    Article  CAS  PubMed  Google Scholar 

  91. Loos PF, Fromager E (2020) J Chem Phys 152(21):214101. https://doi.org/10.1063/5.0007388

    Article  CAS  PubMed  Google Scholar 

  92. Levy M (1979) Proc Natl Acad Sci USA 76(12):6062

    Article  CAS  Google Scholar 

  93. Gould T, Pittalis S (2017) Phys Rev Lett 119(24):243001. https://doi.org/10.1103/PhysRevLett.119.243001

    Article  PubMed  Google Scholar 

  94. Gould T, Stefanucci G, Pittalis S (2020) Phys Rev Lett 125(23):233001. https://doi.org/10.1103/PhysRevLett.125.233001

    Article  CAS  PubMed  Google Scholar 

  95. Franck O, Fromager E (2014) Mol Phys 112:1684. https://doi.org/10.1080/00268976.2013.858191

    Article  CAS  Google Scholar 

  96. Deur K, Mazouin L, Fromager E (2017) Phys Rev B 95(3):035120. https://doi.org/10.1103/PhysRevB.95.035120

    Article  Google Scholar 

  97. Senjean B, Knecht S, Jensen HJAa, Fromager E (2015) Phys Rev A 92:012518. https://doi.org/10.1103/PhysRevA.92.012518

    Article  CAS  Google Scholar 

  98. Gould T, Kronik L, Pittalis S (2018) J Chem Phys 148(17):174101

    Article  Google Scholar 

  99. Deur K, Mazouin L, Senjean B, Fromager E (2018) Eur Phys J B 91:162. https://doi.org/10.1140/epjb/e2018-90124-7

    Article  CAS  Google Scholar 

  100. Nagy A (1996) J Phys B At Mol Opt Phys 29(3):389. https://doi.org/10.1088/0953-4075/29/3/007

    Article  CAS  Google Scholar 

  101. Sagredo F, Burke K (2018) J Chem Phys 149(13):134103. https://doi.org/10.1063/1.5043411

    Article  CAS  PubMed  Google Scholar 

  102. Senjean B, Hedegård ED, Alam MM, Knecht S, Fromager E (2016) Mol Phys 114(7–8):968

    Article  CAS  Google Scholar 

  103. Fromager E (2020) Phys Rev Lett 124(24):243001. https://doi.org/10.1103/PhysRevLett.124.243001

    Article  CAS  PubMed  Google Scholar 

  104. Levy M, Zahariev F (2014) Phys Rev Lett 113(11):113002. https://doi.org/10.1103/PhysRevLett.113.113002

    Article  CAS  PubMed  Google Scholar 

  105. Levy M (1995) Phys Rev A 52(6):R4313. https://doi.org/10.1103/PhysRevA.52.R4313

    Article  CAS  PubMed  Google Scholar 

  106. Perdew JP, Levy M (1983) Phys Rev Lett 51(20):1884. https://doi.org/10.1103/PhysRevLett.51.1884

    Article  CAS  Google Scholar 

  107. Senjean B, Fromager E (2020) Int J Quantum Chem 120(21):e26190. https://doi.org/10.1002/qua.26190

    Article  CAS  Google Scholar 

  108. Hodgson MJ, Kraisler E, Schild A, Gross EK (2017) J Phys Chem Lett 8(24):5974. https://doi.org/10.1021/acs.jpclett.7b02615

    Article  CAS  PubMed  Google Scholar 

  109. Guandalini A, Rozzi CA, Räsänen E, Pittalis S (2019) Phys Rev B 99:125140. https://doi.org/10.1103/PhysRevB.99.125140

    Article  CAS  Google Scholar 

  110. Guandalini A, Ruini A, Räsänen E, Rozzi CA, Pittalis S (2021) Phys Rev B 104:085110. https://doi.org/10.1103/PhysRevB.104.085110

    Article  CAS  Google Scholar 

  111. Rauch Tcv, Marques MAL, Botti S (2020) Phys Rev B 101:245163. https://doi.org/10.1103/PhysRevB.101.245163

    Article  CAS  Google Scholar 

  112. Rauch Tcv, Marques MAL, Botti S (2020) Phys Rev B 102:119902. https://doi.org/10.1103/PhysRevB.102.119902

    Article  Google Scholar 

  113. Hodgson MJP, Wetherell J, Fromager E (2021) Phys Rev A 103(1):012806. https://doi.org/10.1103/PhysRevA.103.012806

    Article  CAS  Google Scholar 

  114. Baerends EJ (2020) Mol Phys 118(5):e1612955. https://doi.org/10.1080/00268976.2019.1612955

    Article  CAS  Google Scholar 

  115. Levy M (1982) Phys Rev A 26(3):1200

    Article  CAS  Google Scholar 

  116. Janak JF (1978) Phys Rev B 18(12):7165. https://doi.org/10.1103/PhysRevB.18.7165

    Article  CAS  Google Scholar 

  117. Levy M, Perdew JP, Sahni V (1984) Phys Rev A 30:2745. https://doi.org/10.1103/PhysRevA.30.2745

    Article  Google Scholar 

  118. Hofmann D, Kümmel S (2012) Phys Rev B 86:201109. https://doi.org/10.1103/PhysRevB.86.201109

    Article  CAS  Google Scholar 

  119. Koentopp M, Burke K, Evers F (2006) Phys Rev B 73:121403. https://doi.org/10.1103/PhysRevB.73.121403

    Article  CAS  Google Scholar 

  120. Gould T, Kronik L (2021) J Chem Phys 154(9):094125. https://doi.org/10.1063/5.0040447

    Article  CAS  PubMed  Google Scholar 

  121. Kümmel S, Kronik L (2008) Rev Mod Phys 80:3. https://doi.org/10.1103/RevModPhys.80.3

    Article  CAS  Google Scholar 

  122. Nagy Á (2001) J Phys B At Mol Phys 34(12):2363. https://doi.org/10.1088/0953-4075/34/12/305

    Article  CAS  Google Scholar 

  123. Paragi G, Gyémánt I, Van Doren VE (2000) Chem Phys Lett 324(5–6):440. https://doi.org/10.1016/S0009-2614(00)00613-8

    Article  CAS  Google Scholar 

  124. Paragi G, Gyémánt I, VanDoren VE (2001) J Mol Struct (Theochem) 571(1–3):153. https://doi.org/10.1016/S0166-1280(01)00561-9

    Article  CAS  Google Scholar 

  125. Seidl A, Görling A, Vogl P, Majewski J, Levy M (1996) Phys Rev B 53(7):3764

    Article  CAS  Google Scholar 

  126. Helgaker T, Jorgensen P, Olsen J (2014) Molecular electronic-structure theory. Wiley, New York. https://doi.org/10.1002/9781119019572

    Book  Google Scholar 

  127. Gidopoulos NI, Papaconstantinou PG, Gross EKU (2002) Phys Rev Lett 88:033003. https://doi.org/10.1103/PhysRevLett.88.033003

    Article  CAS  PubMed  Google Scholar 

  128. Pastorczak E, Pernal K (2014) J Chem Phys 140:18A514. https://doi.org/10.1063/1.4866998

    Article  CAS  PubMed  Google Scholar 

  129. Hirao K, Nakatsuji H (1973) J Chem Phys 59(3):1457. https://doi.org/10.1063/1.1680203

    Article  CAS  Google Scholar 

  130. Schilling C, Pittalis S (2021) Phys Rev Lett 127:023001. https://doi.org/10.1103/PhysRevLett.127.023001

    Article  CAS  PubMed  Google Scholar 

  131. Kvaal S, Ekström U, Teale AM, Helgaker T (2014) J Chem Phys 140(18):18A518. https://doi.org/10.1063/1.4867005

    Article  CAS  PubMed  Google Scholar 

  132. Penz M, Laestadius A, Tellgren EI, Ruggenthaler M (2019) Phys Rev Lett 123:037401. https://doi.org/10.1103/PhysRevLett.123.037401

    Article  CAS  PubMed  Google Scholar 

  133. Senjean B, Tsuchiizu M, Robert V, Fromager E (2017) Mol Phys 115(1–2):48. https://doi.org/10.1080/00268976.2016.1182224

    Article  CAS  Google Scholar 

  134. Li C, Requist R, Gross EKU (2018) J Chem Phys 148(8):084110. https://doi.org/10.1063/1.5011663

    Article  CAS  PubMed  Google Scholar 

  135. Carrascal DJ, Ferrer J, Maitra N, Burke K (2018) Eur Phys J B 91(7):142. https://doi.org/10.1140/epjb/e2018-90114-9

    Article  CAS  Google Scholar 

  136. Smith JC, Pribram-Jones A, Burke K (2016) Phys Rev B 93:245131. https://doi.org/10.1103/PhysRevB.93.245131

  137. Burton HGA, Marut C, Daas TJ, Gori-Giorgi P, Loos PF (2021) J Chem Phys 155(5):054107. https://doi.org/10.1063/5.0056968

    Article  CAS  PubMed  Google Scholar 

  138. Loos PF (2017) J Chem Phys 146(11):114108. https://doi.org/10.1063/1.4978409

    Article  CAS  PubMed  Google Scholar 

  139. Gould T, Pittalis S (2020) Aust J Chem 73(8):714. https://doi.org/10.1071/CH19504

    Article  CAS  Google Scholar 

  140. Gould T (2020) J Phys Chem Lett 11(22):9907. https://doi.org/10.1021/acs.jpclett.0c02894

    Article  CAS  PubMed  Google Scholar 

  141. Fromager E (2015) Mol Phys 113(5):419. https://doi.org/10.1080/00268976.2014.993342

    Article  CAS  Google Scholar 

  142. Görling A, Levy M (1994) Phys Rev A 50(1):196

    Article  Google Scholar 

  143. Görling A, Levy M (1995) Int J Quantum Chem 56(S29):93. https://doi.org/10.1002/qua.560560810

    Article  Google Scholar 

  144. Ivanov S, Levy M (2002) J Chem Phys 116(16):6924. https://doi.org/10.1063/1.1453952

    Article  CAS  Google Scholar 

  145. Yang Zh (2021) arXiv:2109.07697

Download references

Acknowledgements

E.F. would like to thank M. Levy, A. Savin, P.-F. Loos, T. Gould, M. J. P. Hodgson, and J. Wetherell for fruitful discussions as well as LabEx CSC (grant no.: ANR-10-LABX-0026-CSC) for funding. E.F. is also grateful to Trygve Helgaker for his introductory lectures on convex analysis and DFT for fractional electron numbers. The authors also thank ANR (CoLab project, grant no.: ANR-19-CE07-0024-02) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Fromager.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “New Horizon in Computational Chemistry Software”; edited by Michael Filatov, Cheol H. Choi and Massimo Olivucci.

Appendices

Asymptotic Behavior of the xc Potential

Let us consider the simpler one-dimensional (1D) case in which the KS-PPLB equations read as

$$\begin{aligned} -\dfrac{1}{2}\dfrac{d^2 \varphi ^\alpha _i(x)}{dx^2}+\left( v_{\mathrm{ext}}(x)+v^\alpha _{\mathrm{Hxc}}(x)\right) \varphi ^\alpha _i(x)=\varepsilon ^\alpha _i\varphi ^\alpha _i(x), \end{aligned}$$
(290)

thus leading to

$$\begin{aligned} \dfrac{d^2 \varphi ^\alpha _i(x)}{d x^2}\underset{{|{x}|}\rightarrow +\infty }{=}-2\left( \varepsilon ^\alpha _i-v^\alpha _{\mathrm{xc}}(\infty )\right) \varphi ^\alpha _i(x), \end{aligned}$$
(291)

where we used the limits \(v_{\mathrm{ext}}(\infty )=v^\alpha _{\mathrm{H}}(\infty )=0\). Note that \({|{\varphi ^\alpha _i(x)}|}\) is expected to decay as \({|{x}|}\rightarrow +\infty\), which implies \(-2\left( \varepsilon ^\alpha _i-v^\alpha _{\mathrm{xc}}(\infty )\right) >0\). Therefore,

$$\begin{aligned} \varphi ^\alpha _i(x)\underset{{|{x}|}\rightarrow +\infty }{\sim }e^{-\sqrt{-2(\varepsilon ^\alpha _i-v^\alpha _{\mathrm{xc}}(\infty ))}{|{x}|}}, \end{aligned}$$
(292)

and

$$\begin{aligned} n_{\hat{\gamma }_{\mathrm{KS}}^\alpha }(x)\underset{{|{x}|}\rightarrow +\infty }{\sim } \alpha {|{\varphi ^\alpha _N(x)}|}^2 \sim \alpha \,e^{-2\sqrt{-2(\varepsilon ^\alpha _N-v^\alpha _{\mathrm{xc}}(\infty ))}{|{x}|}}. \end{aligned}$$
(293)

In the true interacting system, the N-electron ground-state wave function \(\varPsi ^N_0\) fulfills

$$\begin{aligned} \begin{aligned}&\left[ \sum ^N_{i=1}\left( -\dfrac{1}{2}\dfrac{\partial ^2}{\partial x_i^2}+v_{\mathrm{ext}}(x_i)\right) +\sum ^N_{1\le i<j}w_{\mathrm{ee}}({|{x_i-x_j}|})\right] \varPsi ^N_0(x_1,\ldots ,x_N) \\&\quad =E^N_0\varPsi ^N_0(x_1,\ldots ,x_N), \end{aligned} \end{aligned}$$
(294)

where \(w_{\mathrm{ee}}({|{x_i-x_j}|})\) is a well-behaved two-electron repulsion energy in 1D. Let us consider the situation where \({|{x_1}|}\rightarrow +\infty\) while \(x_2,\ldots ,x_N\) remain in the region of the system, which corresponds to an ionization process in the ground state. Since \(w_{\mathrm{ee}}({|{x_1-x_j}|})\rightarrow 0\), the (to-be-antisymmetrized) wave function and its density can be rewritten as

$$\begin{aligned} \varPsi ^N_0(x_1,\ldots ,x_N)\underset{{|{x_1}|}\rightarrow +\infty }{\sim }\varphi ^{[N]}(x_1)\,\varPsi ^{N-1}_0(x_2,\ldots ,x_N) \end{aligned}$$
(295)

and

$$\begin{aligned} n_{\varPsi ^N_0}(x_1)\underset{{|{x_1}|}\rightarrow +\infty }{\sim }{|{\varphi ^{[N]}(x_1)}|}^2, \end{aligned}$$
(296)

respectively, where

$$\begin{aligned} \dfrac{{\mathrm{d}}^2\varphi ^{[N]}(x_1)}{{\mathrm{d}} x_1^2}\underset{{|{x_1}|}\rightarrow +\infty }{\sim }-2\left( E^N_0-E^{N-1}_0\right) \varphi ^{[N]}(x_1)=2I_0^N\varphi ^{[N]}(x_1), \end{aligned}$$
(297)

thus leading to the explicit expression

$$\begin{aligned} \varphi ^{[N]}(x)\underset{{|{x}|}\rightarrow +\infty }{\sim }e^{-\sqrt{2I_0^N}{|{x}|}}. \end{aligned}$$
(298)

From the exact mapping of the ensemble PPLB density onto the KS system, we deduce from Eqs. (296) and (298) that

$$\begin{aligned} \begin{aligned} n_{\hat{\gamma }_{\mathrm{KS}}^\alpha }(x)&\underset{{|{x}|}\rightarrow +\infty }{\sim }(1-\alpha )e^{-2\sqrt{2I_0^{N-1}}{|{x}|}}+\alpha \,e^{-2\sqrt{2I_0^N}{|{x}|}}\sim \alpha \,e^{-2\sqrt{2I_0^N}{|{x}|}}, \end{aligned} \end{aligned}$$
(299)

where we assumed that \(E^{N-1}_g=I_0^{N-1}-I_0^{N}>0\). Thus, we conclude from Eq. (293) that

$$\begin{aligned} I_0^N=-(\varepsilon ^\alpha _N-v^\alpha _{\mathrm{xc}}(\infty )). \end{aligned}$$
(300)

Any constant shift in the xc potential \(v^\alpha _{\mathrm{xc}}({\mathbf {r}})\) does not affect the above expression. Since, according to Janak’s theorem, \(I_0^N=-\varepsilon ^\alpha _N\), the constant is imposed in PPLB and

$$\begin{aligned} v^\alpha _{\mathrm{xc}}(\infty )=0. \end{aligned}$$
(301)

We now turn to the left and right formulations of N-centered eDFT. We recall the shorthand notations \((\xi _-,0)\overset{notation}{\equiv } \xi _-\) and \((0,\xi _+)\overset{notation}{\equiv } \xi _+\). When \(\xi _+>0\), the right N-centered ensemble density, which is mapped onto a non-interacting KS ensemble, has the following asymptotic behavior [we just need to substitute \(N+1\) for N in Eqs. (293), (296), and (298)],

$$\begin{aligned} n^{\xi _+}(x)&\underset{{|{x}|}\rightarrow +\infty }{\sim }&\xi _+\,e^{-2\sqrt{2I_0^{N+1}}{|{x}|}} \end{aligned}$$
(302)
$$\begin{aligned}\sim & {} \xi _+\,e^{-2\sqrt{-2(\varepsilon ^{\xi _+}_{N+1}-v^{\xi _+}_{\mathrm{xc}}(\infty ))}{|{x}|}}. \end{aligned}$$
(303)

Similarly, for \(\xi _-\ge 0\), we have

$$\begin{aligned} n^{\xi _-}(x)&\underset{{|{x}|}\rightarrow +\infty }{\sim }&\left( 1-\dfrac{(N-1)\xi _-}{N}\right) \,e^{-2\sqrt{2I_0^{N}}{|{x}|}} \end{aligned}$$
(304)
$$\begin{aligned}\sim & {} \left( 1-\dfrac{(N-1)\xi _-}{N}\right) \,e^{-2\sqrt{-2(\varepsilon ^{\xi _-}_{N}-v^{\xi _-}_{\mathrm{xc}}(\infty ))}{|{x}|}}. \end{aligned}$$
(305)

Thus, we conclude that

$$\begin{aligned} A_0^N=I_0^{N+1}\overset{\xi _+>0}{=}-\varepsilon ^{\xi _+}_{N+1}+v^{\xi _+}_{\mathrm{xc}}(\infty ) \end{aligned}$$
(306)

and

$$\begin{aligned} I_0^{N}\overset{\xi _-\ge 0}{=}-\varepsilon ^{\xi _-}_{N}+v^{\xi _-}_{\mathrm{xc}}(\infty ). \end{aligned}$$
(307)

Derivation of the eDMHF Equations

For convenience, we use the following exponential parameterization of the single-configuration wave functions [126],

$$\begin{aligned} {|{\varPhi _I}\rangle }\equiv {|{\varPhi _I(\varvec{\kappa })}\rangle }=e^{-\hat{\kappa }}{|{\overline{\varPhi }^{\mathbf {w}}_I}\rangle }, \end{aligned}$$
(308)

where \(\varvec{\kappa }\equiv \left\{ \kappa _{pq}\right\} _{p<q}\) are the variational orbital rotation parameters and \(\hat{\kappa }\) is the corresponding real singlet rotation quantum operator. The latter reads as follows in second quantization,

$$\begin{aligned} \hat{\kappa }=\sum _{p<q}\kappa _{pq}(\hat{E}_{pq}-\hat{E}_{qp})=-\hat{\kappa }^\dagger , \end{aligned}$$
(309)

where the index p refers to the orbital \(\overline{\varphi }^{\mathbf {w}}_p\) and \(\hat{E}_{pq}=\sum _{\tau =\uparrow ,\downarrow }\hat{a}_{p\tau }^\dagger \hat{a}_{q\tau }\). Therefore, the eDMHF energy becomes a function of \(\varvec{\kappa }\),

$$\begin{aligned} E^{\mathbf {w}}_\mathrm{eDMHF}(\varvec{\kappa })=E_\mathrm{HF}\left( \mathbf{{D}}^{\mathbf {w}}(\varvec{\kappa })\right) , \end{aligned}$$
(310)

where \(\mathbf{{D}}^{\mathbf {w}}(\varvec{\kappa })=\sum _I{\mathtt{{w}}}_I\mathbf{{D}}^{\varPhi _I(\varvec{\kappa })}\) is a trial ensemble density matrix, and \(E_\mathrm{HF}(\mathbf{{D}})\) is the conventional ground-state HF density matrix functional energy:

$$\begin{aligned} E_\mathrm{HF}(\mathbf{{D}})=\sum _{mk}h_{mk}D_{mk}+\dfrac{1}{2}\sum _{klmn}\left( {\langle {mn}}{|{kl}\rangle }-\dfrac{1}{2}{\langle {mn}}{|{lk}\rangle }\right) D_{mk}D_{nl}. \end{aligned}$$
(311)

By construction, the minimum is reached when \(\varvec{\kappa }=0\), and we denote \(\mathbf{{D}}^{\mathbf {w}}=\mathbf{{D}}^{\mathbf {w}}(\varvec{\kappa }=0)\). Note that

$$\begin{aligned} D^{\overline{\varPhi }^{\mathbf {w}}_I}_{pq}={\left\langle {\overline{\varPhi }^{\mathbf {w}}_I}\left| \hat{E}_{pq} \right| {\overline{\varPhi }^{\mathbf {w}}_I}\right\rangle }=\delta _{pq}n^I_{p}, \end{aligned}$$
(312)

where the occupation number \(n^I_{p}\) is an integer, and

$$\begin{aligned} D^{\mathbf {w}}_{pq}=\sum _I{\mathtt{{w}}}_ID^{\overline{\varPhi }^{\mathbf {w}}_I}_{pq}=\delta _{pq}\sum _I{\mathtt{{w}}}_In^I_{p}=\delta _{pq}\theta ^{\mathbf {w}}_p, \end{aligned}$$
(313)

where \(\theta ^{\mathbf {w}}_p\) can be fractional. The stationarity condition that is fulfilled by the minimizing eDMHF orbitals can now be written explicitly as follows,

$$\begin{aligned} \left. \dfrac{\partial E^{\mathbf {w}}_\mathrm{eDMHF}(\varvec{\kappa })}{\partial \kappa _{pq}} \right| _{\varvec{\kappa }=0} =\sum _{rs} \left. \dfrac{\partial D^{\mathbf {w}}_{rs}(\varvec{\kappa })}{\partial \kappa _{pq}}\right| _{\varvec{\kappa }=0} \left. \dfrac{\partial E_\mathrm{HF}\left( \mathbf{{D}}\right) }{\partial D_{rs}}\right| _{\mathbf{{D}}=\mathbf{{D}}^{\mathbf {w}}} =0, \end{aligned}$$
(314)

where

$$\begin{aligned} \begin{aligned} \dfrac{\partial E_\mathrm{HF}\left( \mathbf{{D}}\right) }{\partial D_{rs}}&=h_{rs}+ \dfrac{1}{2}\sum _{nl}\left( {\langle {rn}}{|{sl}\rangle }-\dfrac{1}{2}{\langle {rn}}{|{ls}\rangle }\right) D_{nl} \\&\quad +\dfrac{1}{2}\sum _{mk}\left( {\langle {mr}}{|{ks}\rangle }-\dfrac{1}{2}{\langle {mr}}{|{sk}\rangle }\right) D_{mk} \\&=h_{rs}+\sum _{nl}\left( {\langle {rn}}{|{sl}\rangle }-\dfrac{1}{2}{\langle {rn}}{|{ls}\rangle }\right) D_{nl} \\&\equiv f_{rs}(\mathbf{{D}}) \end{aligned} \end{aligned}$$
(315)

is the conventional density matrix functional Fock operator matrix element, and

$$\begin{aligned} \begin{aligned} \left. \dfrac{\partial D^{\mathbf {w}}_{rs}(\varvec{\kappa })}{\partial \kappa _{pq}} \right| _{\varvec{\kappa }=0}&=\sum _I{\mathtt{{w}}}_I {\left\langle \left[ \hat{E}_{pq}-\hat{E}_{qp},\hat{E}_{rs}\right] \right\rangle }_{\varPhi ^{\mathbf {w}}_I} \\&=\sum _I{\mathtt{{w}}}_I\left( \delta _{qr}\delta _{ps}n^I_{p}-\delta _{ps}\delta _{qr}n^I_{q}-\delta _{pr}\delta _{qs}n^I_{q}+\delta _{qs}\delta _{pr}n^I_{p}\right) \\&=\left( \delta _{qr}\delta _{ps}+\delta _{pr}\delta _{qs}\right) \sum _I{\mathtt{{w}}}_I\left( n^I_{p}-n^I_{q}\right) \\&=\left( \delta _{qr}\delta _{ps}+\delta _{pr}\delta _{qs}\right) (\theta ^{\mathbf {w}}_p-\theta ^{\mathbf {w}}_q), \end{aligned} \end{aligned}$$
(316)

where we used the relation \([\hat{E}_{pq},\hat{E}_{rs}]=\delta _{qr}\hat{E}_{ps}-\delta _{ps}\hat{E}_{rq}\) (see Ref. [126]) with Eqs. (312) and (313). If we denote \(f^{\mathbf {w}}_{rs}=f_{rs}(\mathbf{{D}}^{\mathbf {w}})\), Eq. (314) can be written in a compact form as follows,

$$\begin{aligned} \begin{aligned} (\theta ^{\mathbf {w}}_p-\theta ^{\mathbf {w}}_q)\sum _{rs}\left( \delta _{qr}\delta _{ps}+\delta _{pr}\delta _{qs}\right) f^{\mathbf {w}}_{rs}=0, \end{aligned} \end{aligned}$$
(317)

thus leading to the final result:

$$\begin{aligned} \left( \theta _p^{\mathbf {w}}-\theta _q^{\mathbf {w}}\right) f^{\mathbf {w}}_{qp}=0. \end{aligned}$$
(318)

Derivation of the SAHF Equations

We use the same parameterization as in Appendix 2, i.e.,

$$\begin{aligned} {|{\varPhi _I}\rangle }\equiv {|{\varPhi _I(\varvec{\kappa })}\rangle }=e^{-\hat{\kappa }}{|{\tilde{\varPhi }^{\mathbf {w}}_I}\rangle }, \end{aligned}$$
(319)

where the indices \(\{p\}\) in creation/annihilation operators (as well as in one- and two-electron integrals) now refer to the minimizing SAHF orbitals \(\left\{ \tilde{\varphi }^{\mathbf {w}}_p\right\}\). The to-be-minimized SAHF energy can be expressed as follows,

$$\begin{aligned} E^{\mathbf {w}}_\mathrm{SAHF}(\varvec{\kappa })=\sum _I{\mathtt{{w}}}_I\left( \sum _{rs}h_{rs}D^{\varPhi _I(\varvec{\kappa })}_{rs} +E_{\mathrm{H}}[n_{\varPhi _I(\varvec{\kappa })}]+\mathcal {E}^I_{\mathrm{x}}\left[ \mathbf{D}^{\varPhi _I(\varvec{\kappa })}\right] \right) , \end{aligned}$$
(320)

so that the stationarity condition reads as

$$\begin{aligned} \begin{aligned}&\left. \dfrac{\partial E^{\mathbf {w}}_\mathrm{SAHF}(\varvec{\kappa })}{\partial \kappa _{pq}}\right| _{\varvec{\kappa }=0} =0 \\&= \sum _I{\mathtt{{w}}}_I\left[ \sum _{rs}\left( h_{rs}+\left[ v^{{\mathbf {w}}}_{{\mathrm{x}},I}\right] _{rs}\right) \dfrac{\partial D_{rs}^{{\varPhi }_I(\varvec{\kappa })}}{\partial \kappa _{pq}} +\int {\mathrm{d}}{\mathbf {r}}\, v_{\mathrm{H}}[n_{\tilde{\varPhi }^{\mathbf {w}}_I}]({\mathbf {r}})\dfrac{\partial n_{{\varPhi }_I(\varvec{\kappa })}({\mathbf {r}})}{\partial \kappa _{pq}} \right] _{\varvec{\kappa }=0}, \end{aligned} \end{aligned}$$
(321)

where \(\left[ v^{{\mathbf {w}}}_{{\mathrm{x}},I}\right] _{rs}\equiv \left. \partial \mathcal {E}^I_{\mathrm{x}}\left[ \mathbf{D}\right] /\partial D_{rs}\right| _{\mathbf{{D}}=\mathbf{{D}}^{\tilde{\varPhi }^{\mathbf {w}}_I}}\) and \(v_{\mathrm{H}}[n]({\mathbf {r}})=\delta E_{\mathrm{H}}[n]/\delta n({\mathbf {r}})\). Note that the individual densities are recovered from the density matrices as follows,

$$\begin{aligned} n_{\varPhi _I(\varvec{\kappa })}({\mathbf {r}})=\gamma ^{\varPhi _I(\varvec{\kappa })}({\mathbf {r}},{\mathbf {r}})=\sum _{rs}\tilde{\varphi }^{\mathbf {w}}_r({\mathbf {r}})\tilde{\varphi }^{\mathbf {w}}_s({\mathbf {r}})D^{\varPhi _I(\varvec{\kappa })}_{rs}. \end{aligned}$$
(322)

Therefore, if we use the notation

$$\begin{aligned} {\left\langle {\tilde{\varphi }^{\mathbf {w}}_r}\left| \hat{h}+\hat{v}^{{\mathbf {w}}}_{{\mathrm{Hx}},I} \right| {\tilde{\varphi }^{\mathbf {w}}_s}\right\rangle }=h_{rs} +\int {\mathrm{d}}{\mathbf {r}}\,\tilde{\varphi }^{\mathbf {w}}_r({\mathbf {r}}) v_{\mathrm{H}}[n_{\tilde{\varPhi }^{\mathbf {w}}_I}]({\mathbf {r}})\tilde{\varphi }^{\mathbf {w}}_s({\mathbf {r}}) +\left[ v^{{\mathbf {w}}}_{{\mathrm{x}},I}\right] _{rs} , \end{aligned}$$
(323)

Eq. (321) can be rewritten in a compact form as follows,

$$\begin{aligned} \sum _I{\mathtt{{w}}}_I\sum _{rs}{\left\langle {\tilde{\varphi }^{\mathbf {w}}_r}\left| \hat{h}+\hat{v}^{{\mathbf {w}}}_{{\mathrm{Hx}},I} \right| {\tilde{\varphi }^{\mathbf {w}}_s}\right\rangle }\left. \dfrac{\partial D_{rs}^{{\varPhi }_I(\varvec{\kappa })}}{\partial \kappa _{pq}}\right| _{\varvec{\kappa }=0}=0. \end{aligned}$$
(324)

We conclude from Eq. (316) that

$$\begin{aligned} \begin{aligned} 0&=\sum _I{\mathtt{{w}}}_I\left( n^I_{p}-n^I_{q}\right) \sum _{rs}\left( \delta _{qr}\delta _{ps}+\delta _{pr}\delta _{qs}\right) {\left\langle {\tilde{\varphi }^{\mathbf {w}}_r}\left| \hat{h}+\hat{v}^{{\mathbf {w}}}_{{\mathrm{Hx}},I} \right| {\tilde{\varphi }^{\mathbf {w}}_s}\right\rangle } \\&=2\sum _I{\mathtt{{w}}}_I\left( n^I_{p}-n^I_{q}\right) {\left\langle {\tilde{\varphi }^{\mathbf {w}}_p}\left| \hat{h}+\hat{v}^{{\mathbf {w}}}_{{\mathrm{Hx}},I} \right| {\tilde{\varphi }^{\mathbf {w}}_q}\right\rangle }, \end{aligned} \end{aligned}$$
(325)

thus leading to the final result:

$$\begin{aligned} (\theta ^{\mathbf {w}}_p-\theta ^{\mathbf {w}}_q){\left\langle {\tilde{\varphi }^{\mathbf {w}}_p}\left| \hat{h} \right| {\tilde{\varphi }^{\mathbf {w}}_q}\right\rangle }+\sum _I{\mathtt{{w}}}_I\left( n^I_{p}-n^I_{q}\right) {\left\langle {\tilde{\varphi }^{\mathbf {w}}_p}\left| \hat{v}^{{\mathbf {w}}}_{{\mathrm{Hx}},I} \right| {\tilde{\varphi }^{\mathbf {w}}_q}\right\rangle }=0. \end{aligned}$$
(326)

Exact DD Ensemble Correlation Energy in the Hubbard Dimer

For convenience, we will use the following exact expression for the ensemble DD correlation energy:

$$\begin{aligned} E_{\mathrm{c}}^{{\mathtt{{w}}},\mathrm{DD}}(n^{\mathtt{{w}}})=-(1-{\mathtt{{w}}})^2{\mathtt{{w}}}\dfrac{\partial f_0^{\mathtt{{w}}}(n^{\mathtt{{w}}})}{\partial {\mathtt{{w}}}}+{\mathtt{{w}}}^2(1-{\mathtt{{w}}})\dfrac{\partial f_1^{\mathtt{{w}}}(n^{\mathtt{{w}}})}{\partial {\mathtt{{w}}}}. \end{aligned}$$
(327)

The individual Hx-only GOK energies are extracted from the ensemble energy,

$$\begin{aligned} f^\xi (n)= -2t\sqrt{(1-\xi )^2-(1-n)^2} +\dfrac{U}{2}\left[ 1+\xi -\dfrac{(3\xi -1)(1-n)^2}{(1-\xi )^2}\right] , \end{aligned}$$
(328)

as follows,

$$\begin{aligned} f^{\mathtt{{w}}}_{0}\left( n^{\mathtt{{w}}}\right)= {} f^{\mathtt{{w}}}\left( n^{\mathtt{{w}}}\right) -{\mathtt{{w}}}\left. \dfrac{\partial f^\xi \left( n^{\xi ,{\mathtt{{w}}}}\right) }{\partial \xi }\right| _{\xi ={\mathtt{{w}}}}, \end{aligned}$$
(329)

and

$$\begin{aligned} f^{\mathtt{{w}}}_{1}\left( n^{\mathtt{{w}}}\right)= {} f^{\mathtt{{w}}}\left( n^{\mathtt{{w}}}\right) +(1-{\mathtt{{w}}})\left. \dfrac{\partial f^\xi \left( n^{\xi ,{\mathtt{{w}}}}\right) }{\partial \xi }\right| _{\xi ={\mathtt{{w}}}}, \end{aligned}$$
(330)

where

$$\begin{aligned} n^{\xi ,{\mathtt{{w}}}}=(1-\xi ) n_{\varPhi _{0}^{{\mathtt{{w}}}}}+ \xi n_{\varPhi _{1}^{{\mathtt{{w}}}}}. \end{aligned}$$
(331)

Since \(n_{\varPhi _{1}^{{\mathtt{{w}}}}}=1\) and

$$\begin{aligned} (1-{\mathtt{{w}}})n_{\varPhi _{0}^{{\mathtt{{w}}}}}+{\mathtt{{w}}}n_{\varPhi _{1}^{{\mathtt{{w}}}}}=n^{\mathtt{{w}}}, \end{aligned}$$
(332)

or, equivalently,

$$\begin{aligned} n_{\varPhi _{0}^{{\mathtt{{w}}}}}=\dfrac{n^{\mathtt{{w}}}-{\mathtt{{w}}}}{(1-{\mathtt{{w}}})}, \end{aligned}$$
(333)

it comes

$$\begin{aligned} n^{\xi ,{\mathtt{{w}}}}=(1-\xi )\frac{(n^{{\mathtt{{w}}}}-{\mathtt{{w}}})}{1-{\mathtt{{w}}}}+ \xi \end{aligned}$$
(334)

and

$$\begin{aligned} \left. \dfrac{\partial n^{\xi ,{\mathtt{{w}}}}}{\partial \xi }\right| _{\xi ={\mathtt{{w}}}}=1-\frac{(n^{{\mathtt{{w}}}}-{\mathtt{{w}}})}{1-{\mathtt{{w}}}}=\dfrac{1-n^{\mathtt{{w}}}}{1-{\mathtt{{w}}}}. \end{aligned}$$
(335)

From the weight derivative expression

$$\begin{aligned} \begin{aligned} \left. \dfrac{\partial f^\xi \left( n^{\xi ,{\mathtt{{w}}}}\right) }{\partial \xi }\right| _{\xi ={\mathtt{{w}}}}=\left. \dfrac{\partial f^\xi (n^{\mathtt{{w}}})}{\partial \xi }\right| _{\xi ={\mathtt{{w}}}}+\left. \dfrac{\partial n^{\xi ,{\mathtt{{w}}}}}{\partial \xi }\right| _{\xi ={\mathtt{{w}}}}\times \left. \dfrac{\partial f^{\mathtt{{w}}}(n)}{\partial n}\right| _{n=n^{\mathtt{{w}}}}, \end{aligned} \end{aligned}$$
(336)

where

$$\begin{aligned} \dfrac{\partial f^\xi (n)}{\partial \xi }=\dfrac{2t(1-\xi )}{\sqrt{(1-\xi )^2-(1-n)^2}}+\dfrac{U}{2}\left[ 1-\dfrac{(n-1)^2(1+3\xi )}{(1-\xi )^3}\right] \end{aligned}$$
(337)

and

$$\begin{aligned} \dfrac{\partial f^{\mathtt{{w}}}(n)}{\partial n}=\dfrac{2t(n-1)}{\sqrt{(1-{\mathtt{{w}}})^2-(1-n)^2}}+U\dfrac{(3{\mathtt{{w}}}-1)(1-n)}{(1-{\mathtt{{w}}})^2}, \end{aligned}$$
(338)

thus leading to

$$\begin{aligned} \begin{aligned} \left. \dfrac{\partial f^\xi \left( n^{\xi ,{\mathtt{{w}}}}\right) }{\partial \xi }\right| _{\xi ={\mathtt{{w}}}}&=\dfrac{2t(1-{\mathtt{{w}}})}{\sqrt{(1-{\mathtt{{w}}})^2-(1-n^{\mathtt{{w}}})^2}} \\&\quad -\dfrac{2t(1-n^{\mathtt{{w}}})^2}{(1-{\mathtt{{w}}})\sqrt{(1-{\mathtt{{w}}})^2-(1-n^{\mathtt{{w}}})^2}} \\&\quad + \dfrac{U}{2}\left[ 1-\dfrac{(n^{\mathtt{{w}}}-1)^2(1+3{\mathtt{{w}}})}{(1-{\mathtt{{w}}})^3}\right] \\&\quad +U\dfrac{(3{\mathtt{{w}}}-1)(1-n^{\mathtt{{w}}})^2}{(1-{\mathtt{{w}}})^3}, \end{aligned} \end{aligned}$$
(339)

or, equivalently,

$$\begin{aligned} \left. \dfrac{\partial f^\xi \left( n^{\xi ,{\mathtt{{w}}}}\right) }{\partial \xi }\right| _{\xi ={\mathtt{{w}}}}=\dfrac{2t\sqrt{(1-{\mathtt{{w}}})^2-(1-n^{\mathtt{{w}}})^2}}{(1-{\mathtt{{w}}})} +\dfrac{U}{2}\left[ 1-\dfrac{3(1-n^{\mathtt{{w}}})^2}{(1-{\mathtt{{w}}})^2}\right] , \end{aligned}$$
(340)

it comes

$$\begin{aligned} f^{\mathtt{{w}}}_{0}\left( n^{\mathtt{{w}}}\right) =-\dfrac{2t\sqrt{(1-{\mathtt{{w}}})^2-(1-n^{\mathtt{{w}}})^2}}{(1-{\mathtt{{w}}})}+\dfrac{U}{2}\left[ 1+\dfrac{(1-n^{\mathtt{{w}}})^2}{(1-{\mathtt{{w}}})^2}\right] \end{aligned}$$
(341)

and

$$\begin{aligned} f^{\mathtt{{w}}}_{1}\left( n^{\mathtt{{w}}}\right) =U\left[ 1-\dfrac{(1-n^{\mathtt{{w}}})^2}{(1-{\mathtt{{w}}})^2}\right] . \end{aligned}$$
(342)

As a result,

$$\begin{aligned} \dfrac{\partial f_0^{\mathtt{{w}}}(n^{\mathtt{{w}}})}{\partial {\mathtt{{w}}}}=\dfrac{2t(n^{\mathtt{{w}}}-1)(n_{\varPsi _1}-1)}{(1-{\mathtt{{w}}})^2\sqrt{(1-{\mathtt{{w}}})^2-(1-n^{\mathtt{{w}}})^2}}+U\dfrac{(n^{\mathtt{{w}}}-1)(n_{\varPsi _1}-1)}{(1-{\mathtt{{w}}})^3} \end{aligned}$$
(343)

and

$$\begin{aligned} \dfrac{\partial f_1^{\mathtt{{w}}}(n^{\mathtt{{w}}})}{\partial {\mathtt{{w}}}}=-\dfrac{2U(n^{\mathtt{{w}}}-1)(n_{\varPsi _1}-1)}{(1-{\mathtt{{w}}})^3}, \end{aligned}$$
(344)

which leads, according to Eq. (327), to the final compact expression

$$\begin{aligned} \begin{aligned} E_{\mathrm{c}}^{{\mathtt{{w}}},\mathrm{DD}}(n^{\mathtt{{w}}})&=-{\mathtt{{w}}}(n^{\mathtt{{w}}}-1)(n_{\varPsi _1}-1) \\&\quad \times \left[ \dfrac{2t}{\sqrt{(1-{\mathtt{{w}}})^2-(1-n^{\mathtt{{w}}})^2}}+\dfrac{U(1+{\mathtt{{w}}})}{(1-{\mathtt{{w}}})^2} \right] . \end{aligned} \end{aligned}$$
(345)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cernatic, F., Senjean, B., Robert, V. et al. Ensemble Density Functional Theory of Neutral and Charged Excitations. Top Curr Chem (Z) 380, 4 (2022). https://doi.org/10.1007/s41061-021-00359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00359-1

Keywords

Navigation