Skip to main content
Log in

Thermosetting Polymers from Lignin Model Compounds and Depolymerized Lignins

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Lignin is the most abundant source of renewable ready-made aromatic chemicals for making sustainable polymers. However, the structural heterogeneity, high polydispersity, limited chemical functionality and solubility of most technical lignins makes them challenging to use in developing new bio-based polymers. Recently, greater focus has been given to developing polymers from low molecular weight lignin-based building blocks such as lignin monomers or lignin-derived bio-oils that can be obtained by chemical depolymerization of lignins. Lignin monomers or bio-oils have additional hydroxyl functionality, are more homogeneous and can lead to higher levels of lignin substitution for non-renewables in polymer formulations. These potential polymer feed stocks, however, present their own challenges in terms of production (i.e., yields and separation), pre-polymerization reactions and processability. This review provides an overview of recent developments on polymeric materials produced from lignin-based model compounds and depolymerized lignin bio-oils with a focus on thermosetting materials. Particular emphasis is given to epoxy resins, polyurethanes and phenol-formaldehyde resins as this is where the research shows the greatest overlap between the model compounds and bio-oils. The common goal of the research is the development of new economically viable strategies for using lignin as a replacement for petroleum-derived chemicals in aromatic-based polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Delidovich I, Hausoul PJ, Deng L, Pfutzenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116(3):1540–1599

    Article  CAS  PubMed  Google Scholar 

  2. Llevot A, Grau E, Carlotti S, Grelier S, Cramail H (2016) From lignin-derived aromatic compounds to novel biobased polymers. Macromol Rapid Commun 37(1):9–28

    Article  CAS  PubMed  Google Scholar 

  3. Lora JH (2016) Lignin: A platform for renewable aromatic polymeric materials. In: Lau PCK (ed) Quality living through chemurgy and green chemistry. Springer, Berlin, pp 221–260

    Chapter  Google Scholar 

  4. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33(2):259–276

    Article  CAS  Google Scholar 

  5. Xu C, Ferdosian F (2017) Conversion of lignin into bio-based chemicals and materials. Green chemistry and sustainable technology. Springer, Berlin

    Google Scholar 

  6. Ma S, Li T, Liu X, Zhu J (2016) Research progress on bio-based thermosetting resins. Polym Int 65(2):164–173

    Article  CAS  Google Scholar 

  7. Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96

    Article  CAS  Google Scholar 

  8. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290

    Article  CAS  Google Scholar 

  9. Koike T (2012) Progress in development of epoxy resin systems based on wood biomass in Japan. Polym Eng Sci 52(4):701–717

    Article  CAS  Google Scholar 

  10. Westwood NJ, Panovic I, Lancefield CS (2016) Chemical modification of lignin for renewable polymers and chemicals. In: Fang Z, Smith RLJ (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 183–216

    Chapter  Google Scholar 

  11. Xu C, Arancon RA, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43(22):7485–7500

    Article  CAS  PubMed  Google Scholar 

  12. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599

    Article  CAS  Google Scholar 

  13. Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118(2):614–678. https://doi.org/10.1021/acs.chemrev.7b00588

  14. Yan N, Zhao C, Dyson PJ, Wang C, Liu LT, Kou Y (2008) Selective degradation of wood lignin over noble-metal catalysts in a two-step process. Chemsuschem 1(7):626–629

    Article  CAS  PubMed  Google Scholar 

  15. Torr KM, van de Pas DJ, Cazeils E, Suckling ID (2011) Mild hydrogenolysis of in situ and isolated pinus radiata lignins. Bioresour Technol 102(16):7608–7611

    Article  CAS  PubMed  Google Scholar 

  16. Feghali E, Carrot G, Thuéry P, Genre C, Cantat T (2015) Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation. Energy Environ Sci 8(9):2734–2743

    Article  CAS  Google Scholar 

  17. Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8(6):1748–1763

    Article  CAS  Google Scholar 

  18. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Article  CAS  Google Scholar 

  19. Esposito D, Antonietti M (2015) Redefining biorefinery: the search for unconventional building blocks for materials. Chem Soc Rev 44(16):5821–5835

    Article  CAS  PubMed  Google Scholar 

  20. Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevin B (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16(4):1987–1998

    Article  CAS  Google Scholar 

  21. Fache M, Boutevin B, Caillol S (2015) Vanillin, a key-intermediate of biobased polymers. Eur Polym J 68:488–502

    Article  CAS  Google Scholar 

  22. Jegers HE, Klein MT (1985) Primary and secondary lignin pyrolysis reaction pathways. Ind Eng Chem Process Des Dev 24(1):173–183

    Article  CAS  Google Scholar 

  23. Santos SG, Marques AP, Lima DLD, Evtuguin DV, Esteves VI (2011) Kinetics of eucalypt lignosulfonate oxidation to aromatic aldehydes by oxygen in alkaline medium. Ind Eng Chem Res 50(1):291–298

    Article  CAS  Google Scholar 

  24. Villar JC, Caperos A, García-Ochoa F (1997) Oxidation of hardwood kraft-lignin to phenolic derivatives. Nitrobenzene and copper oxide as oxidants. J Wood Chem Technol 17(3):259–285

    Article  CAS  Google Scholar 

  25. Rodrigues Pinto PC, Borges da Silva EA, Rodrigues AE (2011) Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Ind Eng Chem Res 50(2):741–748

    Article  CAS  Google Scholar 

  26. Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116(4):2275–2306

    Article  CAS  PubMed  Google Scholar 

  27. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559

    Article  CAS  Google Scholar 

  28. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-a and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hernandez ED, Bassett AW, Sadler JM, La Scala JJ, Stanzione JF (2016) Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. ACS Sustain Chem Eng 4(8):4328–4339

    Article  CAS  Google Scholar 

  30. Mauck JR, Yadav SK, Sadler JM, La Scala JJ, Palmese GR, Schmalbach KM, Stanzione JF (2017) Preparation and characterization of highly bio-based epoxy amine thermosets derived from lignocellulosics. Macromol Chem Phys 218(14):1700013

    Article  CAS  Google Scholar 

  31. Auvergne R, Caillol S, David G, Boutevin B, Pascault JP (2014) Biobased thermosetting epoxy: present and future. Chem Rev 114(2):1082–1115

    Article  CAS  PubMed  Google Scholar 

  32. Fache M, Auvergne R, Boutevin B, Caillol S (2015) New vanillin-derived diepoxy monomers for the synthesis of biobased thermosets. Eur Polym J 67:527–538

    Article  CAS  Google Scholar 

  33. Fache M, Viola A, Auvergne R, Boutevin B, Caillol S (2015) Biobased epoxy thermosets from vanillin-derived oligomers. Eur Polym J 68:526–535

    Article  CAS  Google Scholar 

  34. Fache M, Boutevin B, Caillol S (2016) Epoxy thermosets from model mixtures of the lignin-to-vanillin process. Green Chem 18(3):712–725

    Article  CAS  Google Scholar 

  35. Parsell T, Yohe S, Degenstein J, Jarrell T, Klein I, Gencer E, Hewetson B, Hurt M, Kim JI, Choudhari H, Saha B, Meilan R, Mosier N, Ribeiro F, Delgass WN, Chapple C, Kenttämaa HI, Agrawal R, Abu-Omar MM (2015) A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem 17(3):1492–1499

    Article  CAS  Google Scholar 

  36. Zhao S, Abu-Omar MM (2015) Biobased epoxy nanocomposites derived from lignin-based monomers. Biomacromol 16(7):2025–2031

    Article  CAS  Google Scholar 

  37. Zhao S, Abu-Omar MM (2016) Renewable epoxy networks derived from lignin-based monomers: effect of cross-linking density. ACS Sustain Chem Eng 4(11):6082–6089

    Article  CAS  Google Scholar 

  38. François C, Pourchet S, Boni G, Fontaine S, Gaillard Y, Placet V, Galkin MV, Orebom A, Samec J, Plasseraud L (2016) Diglycidylether of iso-eugenol: a suitable lignin-derived synthon for epoxy thermoset applications. RSC Adv 6(73):68732–68738

    Article  CAS  Google Scholar 

  39. Rao VS, Samui AB (2008) Molecular engineering of photoactive liquid crystalline polyester epoxies containing benzylidene moiety. J Polym Sci Part A Polym Chem 46(23):7637–7655

    Article  CAS  Google Scholar 

  40. Wang S, Ma S, Xu C, Liu Y, Dai J, Wang Z, Liu X, Chen J, Shen X, Wei J, Zhu J (2017) Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules 50(5):1892–1901

    Article  CAS  Google Scholar 

  41. Oulame MZ, Pion F, Allauddin S, Raju KVSN, Ducrot P-H, Allais F (2015) Renewable alternating aliphatic-aromatic poly(ester-urethane)s prepared from ferulic acid and bio-based diols. Eur Polym J 63:186–193

    Article  CAS  Google Scholar 

  42. Kuhire SS, Nagane SS, Wadgaonkar PP (2017) Poly(ether urethane)s from aromatic diisocyanates based on lignin-derived phenolic acids. Polym Int 66(6):892–899

    Article  CAS  Google Scholar 

  43. Chen Q, Gao K, Peng C, Xie H, Zhao ZK, Bao M (2015) Preparation of lignin/glycerol-based bis(cyclic carbonate) for the synthesis of polyurethanes. Green Chem 17(9):4546–4551

    Article  CAS  Google Scholar 

  44. Gang H, Lee D, Choi K-Y, Kim H-N, Ryu H, Lee D-S, Kim B-G (2017) Development of high performance polyurethane elastomers using vanillin-based green polyol chain extender originating from lignocellulosic biomass. ACS Sustain Chem Eng 5(6):4582–4588

    Article  CAS  Google Scholar 

  45. Endo T, Sudo A (2009) Development and application of novel ring-opening polymerizations to functional networked polymers. J Polym Sci Part A Polym Chem 47(19):4847–4858

    Article  CAS  Google Scholar 

  46. Comí M, Lligadas G, Ronda JC, Galià M, Cádiz V (2013) Renewable benzoxazine monomers from “lignin-like” naturally occurring phenolic derivatives. J Polym Sci Part A Polym Chem 51(22):4894–4903

    Article  CAS  Google Scholar 

  47. Wang C, Sun J, Liu X, Sudo A, Endo T (2012) Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chem 14(10):2799–2806

    Article  CAS  Google Scholar 

  48. Phalak GA, Patil DM, Mhaske ST (2017) Synthesis and characterization of thermally curable guaiacol based poly(benzoxazine-urethane) coating for corrosion protection on mild steel. Eur Polym J 88:93–108

    Article  CAS  Google Scholar 

  49. Oliveira JR, Kotzebue LRV, Ribeiro FWM, Mota BC, Zampieri D, Mazzetto SE, Ishida H, Lomonaco D (2017) Microwave-assisted solvent-free synthesis of novel benzoxazines: a faster and environmentally friendly route to the development of bio-based thermosetting resins. J Polym Sci Part A Polym Chem 55(21):3534–3544

    Article  CAS  Google Scholar 

  50. Sini NK, Bijwe J, Varma IK (2014) Renewable benzoxazine monomer from vanillin: synthesis, characterization, and studies on curing behavior. J Polym Sci Part A Polym Chem 52(1):7–11

    Article  CAS  Google Scholar 

  51. Van A, Chiou K, Ishida H (2014) Use of renewable resource vanillin for the preparation of benzoxazine resin and reactive monomeric surfactant containing oxazine ring. Polymer 55(6):1443–1451

    Article  CAS  Google Scholar 

  52. Stanzione JF, Sadler JM, La Scala JJ, Reno KH, Wool RP (2012) Vanillin-based resin for use in composite applications. Green Chem 14(8):2346–2352

    Article  CAS  Google Scholar 

  53. Stanzione JF, Giangiulio PA, Sadler JM, La Scala JJ, Wool RP (2013) Lignin-based bio-oil mimic as biobased resin for composite applications. ACS Sustain Chem Eng 1(4):419–426

    Article  CAS  Google Scholar 

  54. Meylemans HA, Harvey BG, Reams JT, Guenthner AJ, Cambrea LR, Groshens TJ, Baldwin LC, Garrison MD, Mabry JM (2013) Synthesis, characterization, and cure chemistry of renewable bis(cyanate) esters derived from 2-methoxy-4-methylphenol. Biomacromolecules 14(3):771–780

    Article  CAS  PubMed  Google Scholar 

  55. Holmberg AL, Karavolias MG, Epps TH (2015) Raft polymerization and associated reactivity ratios of methacrylate-functionalized mixed bio-oil constituents. Polym Chem 6(31):5728–5739

    Article  CAS  Google Scholar 

  56. Ferdosian F, Yuan Z, Anderson M, Xu C (2015) Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: curing kinetics and thermal properties. Thermochim Acta 618:48–55

    Article  CAS  Google Scholar 

  57. Ferdosian F, Yuan Z, Anderson M, Xu C (2016) Synthesis and characterization of hydrolysis lignin-based epoxy resins. Ind Crops Prod 91:295–301

    Article  CAS  Google Scholar 

  58. Ferdosian F, Zhang Y, Yuan Z, Anderson M, Xu C (2016) Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins. Eur Polym J 82:153–165

    Article  CAS  Google Scholar 

  59. van de Pas DJ, Torr KM (2017) Biobased epoxy resins from deconstructed native softwood lignin. Biomacromol 18(8):2640–2648

    Article  CAS  Google Scholar 

  60. Kaiho A, Mazzarella D, Satake M, Kogo M, Sakai R, Watanabe T (2016) Construction of the di(trimethylolpropane) cross linkage and the phenylnaphthalene structure coupled with selective β-O-4 bond cleavage for synthesizing lignin-based epoxy resins with a controlled glass transition temperature. Green Chem 18(24):6526–6535

    Article  CAS  Google Scholar 

  61. Qin J, Woloctt M, Zhang J (2014) Use of polycarboxylic acid derived from partially depolymerized lignin as a curing agent for epoxy application. ACS Sustain Chem Eng 2(2):188–193

    Article  CAS  Google Scholar 

  62. Mahmood N, Yuan Z, Schmidt J, Xu C (2016) Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sustain Energy Rev 60:317–329

    Article  CAS  Google Scholar 

  63. Li Y, Ragauskas AJ (2012) Kraft lignin-based rigid polyurethane foam. J Wood Chem Technol 32(3):210–224

    Article  CAS  Google Scholar 

  64. Mahmood N, Yuan Z, Schmidt J, Xu C (2015) Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized kraft lignin via direct replacement or oxypropylation. Eur Polym J 68:1–9

    Article  CAS  Google Scholar 

  65. Mahmood N, Yuan Z, Schmidt J, Xu C (2013) Valorization of hydrolysis lignin for polyols and rigid polyurethane foam. J Sci Technol For Prod Processes 3(5):26–31

    Google Scholar 

  66. Wyosocka K, Szymona K, McDonald AG, Maminski M (2016) Characterisation of thermal and mechanical properties of ligninsulfonate- and hydrolysed lignosulfonate-based polyurethane foams. BioResources 11(3):7355–7364

    Google Scholar 

  67. Xue B-L, Huang P-L, Sun Y-C, Li X-P, Sun R-C (2017) Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis. RSC Adv 7(10):6123–6130

    Article  CAS  Google Scholar 

  68. Vanderlaan MN, Thring RW (1998) Polyurethanes from alcell® lignin fractions obtained by sequential solvent extraction. Biomass Bioenergy 14(5–6):525–531

    Article  CAS  Google Scholar 

  69. Yoshida H, Mörck R, Kringstad KP, Hatakeyama H (1990) Kraft lignin in polyurethanes. Ii. Effects of the molecular weight of kraft lignin on the properties of polyurethanes from a kraft lignin–polyether triol–polymeric mdi system. J Appl Polym Sci 40(11–12):1819–1832

    Article  CAS  Google Scholar 

  70. Cinelli P, Anguillesi I, Lazzeri A (2013) Green synthesis of flexible polyurethane foams from liquefied lignin. Eur Polym J 49(6):1174–1184

    Article  CAS  Google Scholar 

  71. Bernardini J, Anguillesi I, Coltelli M-B, Cinelli P, Lazzeri A (2015) Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents. Polym Int 64(9):1235–1244

    Article  CAS  Google Scholar 

  72. Wei Y, Cheng F, Li H, Yu J (2004) Synthesis and properties of polyurethane resins based on liquefied wood. J Appl Polym Sci 92(1):351–356

    Article  CAS  Google Scholar 

  73. Li H, Mahmood N, Ma Z, Zhu M, Wang J, Zheng J, Yuan Z, Wei Q, Xu C (2017) Preparation and characterization of bio-polyol and bio-based flexible polyurethane foams from fast pyrolysis of wheat straw. Ind Crops Prod 103:64–72

    Article  CAS  Google Scholar 

  74. Cheng S, Yuan Z, Leitch M, Anderson M, Xu C (2013) Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio. Ind Crops Prod 44:315–322

    Article  CAS  Google Scholar 

  75. Li B, Wang Y, Mahmood N, Yuan Z, Schmidt J, Xu C (2017) Preparation of bio-based phenol formaldehyde foams using depolymerized hydrolysis lignin. Ind Crops Prod 97:409–416

    Article  CAS  Google Scholar 

  76. Vithanage AE, Chowdhury E, Alejo LD, Pomeroy PC, DeSisto WJ, Frederick BG, Gramlich WM (2017) Renewably sourced phenolic resins from lignin bio-oil. J Appl Polym Sci 134(19):44827

    Article  CAS  Google Scholar 

  77. Wang M, Leitch M, Xu CC (2009) Synthesis of phenolic resol resins using cornstalk-derived bio-oil produced by direct liquefaction in hot-compressed phenol–water. J Ind Eng Chem 15(6):870–875

    Article  CAS  Google Scholar 

  78. Cheng S, D’Cruz I, Yuan Z, Wang M, Anderson M, Leitch M, Xu C (2011) Use of biocrude derived from woody biomass to substitute phenol at a high-substitution level for the production of biobased phenolic resol resins. J Appl Polym Sci 121(5):2743–2751

    Article  CAS  Google Scholar 

  79. Yan L, Cui Y, Gou G, Wang Q, Jiang M, Zhang S, Hui D, Gou J, Zhou Z (2017) Liquefaction of lignin in hot-compressed water to phenolic feedstock for the synthesis of phenol-formaldehyde resins. Compos B Eng 112:8–14

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The review was supported by the New Zealand Ministry of Business, Innovation and Employment via Scion funding from the Strategic Science Investment Fund. VITO would like to acknowledge the province of Noord-Brabant (The Netherlands) for the financial support in the framework of the activities at the Shared Research Center Biorizon.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elias Feghali, Kirk M. Torr or Richard Vendamme.

Additional information

This article is part of the Topical Collection “Lignin Chemistry”; edited by Luis Serrano, Rafael Luque, Bert Sels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feghali, E., Torr, K.M., van de Pas, D.J. et al. Thermosetting Polymers from Lignin Model Compounds and Depolymerized Lignins. Top Curr Chem (Z) 376, 32 (2018). https://doi.org/10.1007/s41061-018-0211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-018-0211-6

Keywords

Navigation