Skip to main content
Log in

Interfacing Luminescent Quantum Dots with Functional Molecules for Optical Sensing Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Semiconductor quantum dots possess unique size-dependent electronic properties and are of high potential interest for the construction of functional nanodevices. Photoinduced electron- and energy-transfer processes between quantum dots and surface-bound molecular species open up attractive routes to implement chemical switching of luminescence, which is at the basis of luminescence sensing. In this article, we discuss the general principles underlying the rational design of this kind of multicomponent species. Successively, we illustrate a few prominent examples, taken from the recent literature, of luminescent chemosensors constructed by attaching molecular species to the surface of quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Direct band gap semiconductors are those in which the minimum energy state in the conduction band and the maximum energy state in the valence band have the same momentum.

References

  1. Bawendi MG, Steigerwald ML, Brus LE (1990) Ann Rev Phys Chem 41:477–496

    Article  CAS  Google Scholar 

  2. Efros AL, Rosen M (2000) Ann Rev Mater Sci 30:475–521

    Article  CAS  Google Scholar 

  3. Alivisatos AP (1996) Science 271:933–937

    Article  CAS  Google Scholar 

  4. Efros AL (1982) Sov Phys Semicond 16:772–775

    Google Scholar 

  5. Brus LE (1983) J Chem Phys 79:5566–5571

    Article  CAS  Google Scholar 

  6. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  7. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Nat Methods 5:763–775

    Article  CAS  Google Scholar 

  8. Hötzer B, Medintz IL, Hildebrandt N (2012) Small 8:2297–2326

    Article  Google Scholar 

  9. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544

    Article  CAS  Google Scholar 

  10. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Chem Rev 110:389–458

    Article  CAS  Google Scholar 

  11. Kamat PV, Tvrdy K, Baker DR, Radich JG (2010) Chem Rev 110:6664–6688

    Article  CAS  Google Scholar 

  12. de Mello Donegá C (2011) Chem Soc Rev 40:1512–1546

    Article  Google Scholar 

  13. Doane TL, Burda C (2012) Chem Soc Rev 41:2885–2911

    Article  CAS  Google Scholar 

  14. Amelia M, Lincheneau C, Silvi S, Credi A (2012) Chem Soc Rev 41:5728–5743

    Article  CAS  Google Scholar 

  15. Shirasaki Y, Supran GJ, Bawendi MG, Bulović V (2013) Nat Photon 7:13–23

    Article  CAS  Google Scholar 

  16. Fernée MJ, Tamarat P, Lounis B (2014) Chem Soc Rev 43:1311–1337

    Article  Google Scholar 

  17. Schmid G (2004) Nanoparticles: from theory to applications. Wiley, Weinheim

    Google Scholar 

  18. Klimov VI (2005) Semiconductor and metal nanocrystals. Dekker, New York

    Google Scholar 

  19. Rogach AL (2008) Semiconductor nanocrystal quantum dots. Springer, Vienna

    Book  Google Scholar 

  20. Callan JF, Raymo FM (2013) Quantum dot sensors: technology and commercial applications. Pan Stanford Publishing, Singapore

    Book  Google Scholar 

  21. Yin Y, Alivisatos AP (2005) Nature 437:664–670

    Article  CAS  Google Scholar 

  22. de Mello Donegá C, Liljeroth P, Vanmaekelbergh D (2005) Small 1:1152–1162

    Article  Google Scholar 

  23. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46:4630–4660

    Article  CAS  Google Scholar 

  24. Das A, Snee PT (2016) ChemPhysChem 17:598–617

    Article  CAS  Google Scholar 

  25. Green M (2010) J Mater Chem 20:5797–5809

    Article  CAS  Google Scholar 

  26. Morris-Cohen AJ, Malicki M, Peterson MD, Slavin JWJ, Weiss EA (2013) Chem Mater 25:1155–1165

    Article  CAS  Google Scholar 

  27. Boles MA, Ling D, Hyeon T, Talapin DV (2016) Nat Mater 15:141–153

    Article  CAS  Google Scholar 

  28. Credi A (2012) New J Chem 26:1925–1930

    Article  Google Scholar 

  29. de Silva AP, Gunaratne HQN, GunnlaugssonT Huxley NAJM, McCoy CP, Rademacher JT, Rice TE (1997) Chem Rev 97:1515–1566

    Article  Google Scholar 

  30. Hildebrandt N (2011) ACS Nano 5:5286–5290

    Article  CAS  Google Scholar 

  31. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Science 300:1434–1436

    Article  CAS  Google Scholar 

  32. Somers RC, Bawendi MG, Nocera DG (2007) Chem Soc Rev 3:579–591

    Article  Google Scholar 

  33. Raymo FM, Yildiz I (2007) Phys Chem Chem Phys 9:2036–2042

    Article  CAS  Google Scholar 

  34. Freeman R, Willner I (2012) Chem Soc Rev 41:4067–4085

    Article  CAS  Google Scholar 

  35. Petryayeva E, Algar WR, Medintz IL (2013) Appl Spectr 67:215–252

    Article  CAS  Google Scholar 

  36. Tyrakowski CM, Snee PT (2014) Phys Chem Chem Phys 16:837–855

    Article  CAS  Google Scholar 

  37. Silvi S, Credi A (2015) Chem Soc Rev 44:4275–4289

    Article  CAS  Google Scholar 

  38. Chen Y, Rosenzweig Z (2002) Anal Chem 74:5132–5138

    Article  CAS  Google Scholar 

  39. Norris DJ, Efros AL, Rosen M, Bawendi MG (1996) Phys Rev B 53:16347–16354

    Article  CAS  Google Scholar 

  40. Reiss P, Protière M, Li L (2009) Small 5:154–168

    Article  CAS  Google Scholar 

  41. Chaudhuri RG, Paria S (2012) Chem Rev 112:2373–2433

    Article  Google Scholar 

  42. Kim S, Fisher B, Eisler HJ, Bawendi M (2003) J Am Chem Soc 125:11466–11467

    Article  CAS  Google Scholar 

  43. Talapin D, Koeppe R, Gotzinger S, Kornowski A, Lupton J, Rogach A, Benson O, Feldmann J, Weller H (2003) Nano Lett 3:1677–1681

    Article  CAS  Google Scholar 

  44. Rabouw FT, de Mello Donega C. Top Curr Chem (in press)

  45. Palui G, Aldeek F, Wang W, Mattoussi H (2015) Chem Soc Rev 44:193–227

    Article  CAS  Google Scholar 

  46. Lesnyak V, Gaponik N, Eychmüller A (2013) Chem Soc Rev 42:2905–2929

    Article  CAS  Google Scholar 

  47. Ulusoy M, Jonczyk R, Walter JG, Springer S, Lavrentieva A, Stahl F, Green M, Scheper T (2016) Bioconjugate Chem 27:414–426

    Article  CAS  Google Scholar 

  48. Wang F, Tang R, Kao JLF, Dingman SD, Buhro WE (2009) J Am Chem Soc 131:4983–4994

    Article  CAS  Google Scholar 

  49. Green MLH (1995) J Organomet Chem 500:127–148

    Article  CAS  Google Scholar 

  50. Anderson NC, Hendricks MP, Choi JJ, Owen JS (2013) J Am Chem Soc 135:18536–18548

    Article  CAS  Google Scholar 

  51. Owen J (2015) Science 347:615–616

    Article  CAS  Google Scholar 

  52. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  53. Erathodiyil N, Ying JY (2011) Acc Chem Res 44:925–935

    Article  CAS  Google Scholar 

  54. Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) J Am Chem Soc 130:1274–1284

    Article  CAS  Google Scholar 

  55. Yildiz I, Deniz E, McCaughan B, Cruickshank SF, Callan JF, Raymo FM (2010) Langmuir 26:11503–11511

    Article  CAS  Google Scholar 

  56. Avellini T, Lincheneau C, La Rosa M, Pertegas A, Bolink HJ, Wright IA, Constable EC, Silvi S, Credi A (2014) Chem Commun 50:11020–11022

    Article  CAS  Google Scholar 

  57. Palui G, Avellini T, Zhan N, Pan F, Gray D, Alabugin I, Mattoussi H (2012) J Am Chem Soc 134:16370–16378

    Article  CAS  Google Scholar 

  58. Baly B, Ling J, de Silva AP (2015) Chem Soc Rev 44:4203–4211

    Article  Google Scholar 

  59. Yildiz I, Tomasulo M, Raymo FM (2008) J Mater Chem 18:5577–5584

    Article  CAS  Google Scholar 

  60. Medintz IL, Mattoussi H (2009) Phys Chem Chem Phys 11:17–45

    Article  CAS  Google Scholar 

  61. Avellini T, Lincheneau C, Vera F, Silvi S, Credi A (2014) Coord Chem Rev 263–264:151

    Article  Google Scholar 

  62. Credi A (2014) Chem Soc Rev 43:3995–4270 (themed issue on photochemistry of supramolecular systems and nanostructured assemblies)

    Article  Google Scholar 

  63. Balzani V, Credi A, Venturi M (2008) Molecular devices and machines—concepts and perspective for the nano world. Wiley, Weinheim

    Book  Google Scholar 

  64. Zhu H, Song N, Lian T (2010) J Am Chem Soc 132:15038–15045

    Article  CAS  Google Scholar 

  65. Kaledin AL, Lian T, Hill CL, Musaev DG (2015) J Phys Chem B 119:7651–7658

    Article  CAS  Google Scholar 

  66. Zeng P, Kirkwood N, Mulvaney P, Boldt K, Smith TA (2016) Nanoscale 8:10380–10387

    Article  CAS  Google Scholar 

  67. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  68. Clapp AR, Medintz IL, Mattoussi H (2006) ChemPhysChem 7:47–57

    Article  CAS  Google Scholar 

  69. Aldeek F, Ji X, Mattoussi H (2013) J Phys Chem C 117:15429–15437

    Article  CAS  Google Scholar 

  70. Völker J, Zhou X, Ma X, Flessau S, Lin H, Schmittel M, Mews A (2010) Angew Chem Int Ed 49:6865–6868

    Article  Google Scholar 

  71. Han C, Cui Z, Zou Z, Tian SD, Li H (2010) Photochem Photobiol Sci 9:1269–1273

    Article  CAS  Google Scholar 

  72. Ruedas-Rama MJ, Orte A, Hall EAH, Alvarez-Pez JM, Talavera EM (2012) Analyst 137:1500–1508

    Article  CAS  Google Scholar 

  73. Huber C, Klimant I, Krause C, Werner T, Mayr T, Wolfbeis OS (2000) Fresenius J Anal Chem 368:196–202

    Article  CAS  Google Scholar 

  74. Huber C, Krause C, Werner T, Wolfbeis OS (2003) Microchim Acta 142:245–253

    Article  CAS  Google Scholar 

  75. Medintz L, Stewart MH, Trammell SA, Susumu K, Delehanty JB, Mei BC, Melinger JS, Blanco-Canosa JB, Dawson PE, Mattoussi H (2010) Nat Mater 9:676–684

    Article  CAS  Google Scholar 

  76. Laviron E (1984) J Electroanal Chem 164:213–227

    Article  CAS  Google Scholar 

  77. Wraight CA (2004) Front Biosci 9:309–337

    Article  CAS  Google Scholar 

  78. Clapp AR, Medinitz L, Fisher BR, Anderson GP, Mattoussi H (2005) J Am Chem Soc 127:1242–1250

    Article  CAS  Google Scholar 

  79. Snee PT, Somers RC, Nair G, Zimmer JP, Bawendi MG, Nocera DG (2006) J Am Chem Soc 128:13320–13321

    Article  CAS  Google Scholar 

  80. Tang R, Lee H, Achilefu S (2012) J Am Chem Soc 134:4545–4548

    Article  CAS  Google Scholar 

  81. Geissler D, Charbonnière LJ, Ziessel RF, Butlin NG, Löhmansröben H-G, Hildebrandt N (2010) Angew Chem Int Ed 49:1396–1401

    Article  CAS  Google Scholar 

  82. Lemon CM, Karnas E, Bawendi MG, Nocera DG (2013) Inorg Chem 52:10394–10406

    Article  CAS  Google Scholar 

  83. Mongin C, Garakyaraghi S, Razgoniaeva N, Zamkov M, Castellano FN (2016) Science 351:369–372

    Article  CAS  Google Scholar 

  84. Scholes GD (2014) Adv Funct Mater 13:1039–1043

    Google Scholar 

  85. Amelia M, Lavie-Cambot A, McClenaghan ND, Credi A (2011) Chem Commun 47:325–327

    Article  CAS  Google Scholar 

  86. Bottril M, Green M (2011) Chem Commun 47:7039–7050

    Article  Google Scholar 

  87. Ye L, Yong KT, Liu L, Roy I, Hu R, Zhu J, Cai H, Law WC, Liu J, Wang K, Liu J, Liu Y, Hu Y, Zhang X, Swihart MT, Prasad PN (2012) Nat Nanotech 7:453–458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Italian Ministry of Education, University and Research (PRIN 2010CX2TLM “InfoChem”), the Université Franco-Italienne (Vinci programme) and the University of Bologna is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serena Silvi or Alberto Credi.

Additional information

This article is part of the Topical Collection “Photoactive Semiconductor Nanocrystal Quantum Dots”; edited by Alberto Credi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvi, S., Baroncini, M., La Rosa, M. et al. Interfacing Luminescent Quantum Dots with Functional Molecules for Optical Sensing Applications. Top Curr Chem (Z) 374, 65 (2016). https://doi.org/10.1007/s41061-016-0066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0066-7

Keywords

Navigation