Skip to main content

Advertisement

Log in

Performance evaluation of reclaimed asphalt pavement (RAP) aggregate in concrete pavements: a state-of-the-art review

  • Review Article
  • Published:
Journal of Building Pathology and Rehabilitation Aims and scope Submit manuscript

Abstract

Recycling flexible pavement generates huge quantities of Reclaimed Asphalt Pavement (RAP) aggregates, which are sometimes deserted in landfills or open dump yards. Use of this otherwise waste material in concrete may be a viable option to reduce both the ever-increasing demand for natural aggregates and minimize the landfill area utilization due to the dumping of RAP. Many researchers studied the influence of RAP aggregates on concrete performance and suggested various pre-treatment methods for the processing of RAP aggregates. A comprehensive review on the influence of RAP aggregates on concrete performance is needed to raise awareness among engineers and contractors. This paper presents an extensive review on various properties of concrete which vary with the use of RAP aggregates in concrete. Also, reviewed the process for the preparation of RAP to utilize as aggregate in concrete. The addition of pre-treated RAP aggregates increases the workability of concrete. The use of RAP aggregates diminishes the mechanical and durability characteristics of concrete. Literature shows that the use of processed RAP aggregates along with supplementary cementitious materials or fibers can improve the performance of RAP concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Alexis De Greiff A, Sebastian J, Triana S (2020) Local, global and fragmented narratives about road construction : an invitation to look beyond our disciplinary space. J Transp Hist 41(1):6–26. https://doi.org/10.1177/0022526620903018

    Article  Google Scholar 

  2. Aldagheiri M (2009) The role of the transport road network in the economic development of Saudi Arabia. WIT Trans Built Environ 107:275–285. https://doi.org/10.2495/UT090251

    Article  Google Scholar 

  3. Debbarma S, Selvam M, Singh S (2020) Can flexible pavements ’ waste (RAP) be utilized in cement concrete pavements ?—a critical review. Constr Build Mater 259:120417. https://doi.org/10.1016/j.conbuildmat.2020.120417

    Article  Google Scholar 

  4. Meena S, Choudhary L, Dey A (2013) Quasi-static analysis of geotextile reinforced unpaved road resting on c-φ subgrade. Procedia Soc Behav Sci 104:235–244. https://doi.org/10.1016/J.SBSPRO.2013.11.116

    Article  Google Scholar 

  5. “Annual Report 2021–22 (2022) Ministry of Road Transport and Highways, Government of India.” https://morth.nic.in/annual-report-2021-22. Accessed 11 Dec 2022

  6. “Annual Report 2020–21 (2022) Ministry of Road Transport and Highways, Government of India.” https://morth.nic.in/annual-report-2020-21. Accessed 11 Dec 2022

  7. Mohod MV, Kadam KN (2016) A comparative study on rigid and flexible pavement: a review. IOSR J Mech Civil Eng 13(3):84–88. https://doi.org/10.9790/1684-1303078488

    Article  Google Scholar 

  8. Al-humeidawi BH, Pavement H, Bonicelli A, Preciado J, Zhong K, Sun M (2021) How sustainable are flexible and rigid pavement ? A life cycle impact assessment (LCIA) approach. IOP Conf Ser Mater Sci Eng 1072:1–11. https://doi.org/10.1088/1757-899X/1072/1/012071

    Article  Google Scholar 

  9. Handayani FS, Pramesti FP, Wibowo MA, Setyawan A (2019) Estimating and reducing the release of greenhouse gases in local road pavement constructions. Int J Adv Sci Eng Inf Technol 9(5):1709–1715

    Article  Google Scholar 

  10. Mix B, Samples M, Sorociak W, Grzesik B (2021) Review on applications of RAP in civil engineering. IOP Conf Ser Mater Sci Eng 1105:1–8. https://doi.org/10.1088/1757-899X/1105/1/012092

    Article  Google Scholar 

  11. Cao R, Leng Z, Hsu SC (2019) Comparative eco-efficiency analysis on asphalt pavement rehabilitation alternatives: hot in-place recycling and milling-and-filling. J Clean Prod 210:1385–1395. https://doi.org/10.1016/J.JCLEPRO.2018.11.122

    Article  Google Scholar 

  12. Yao L, Leng Z, Lan J, Chen R, Jiang J (2022) Environmental and economic assessment of collective recycling waste plastic and reclaimed asphalt pavement into pavement construction: a case study in Hong Kong. J Clean Prod 336:130405. https://doi.org/10.1016/J.JCLEPRO.2022.130405

    Article  Google Scholar 

  13. Bressi S, Santos J, Orešković M, Losa M (2019) A comparative environmental impact analysis of asphalt mixtures containing crumb rubber and reclaimed asphalt pavement using life cycle assessment. Int J Pavement Eng 22(4):524–538. https://doi.org/10.1080/10298436.2019.1623404

    Article  Google Scholar 

  14. Al Dughaishi H et al (2022) Encouraging sustainable use of RAP materials for pavement construction in Oman: a review. Recycling 7(3):35. https://doi.org/10.3390/RECYCLING7030035

    Article  Google Scholar 

  15. Choudhary L, Bansal S, Kalra M, Dagar L (2022) Mechanical evaluation of recycled aggregate mixes and its application in reclaimed asphalt pavement (RAP) stretch. Beni Suef Univ J Basic Appl Sci 11(1):1–12. https://doi.org/10.1186/S43088-022-00302-3/TABLES/9

    Article  Google Scholar 

  16. Mariyappan R, Palammal JS, Balu S (2023) Sustainable use of reclaimed asphalt pavement (RAP) in pavement applications—a review. Environ Sci Pollut Res. https://doi.org/10.1007/S11356-023-25847-3

    Article  Google Scholar 

  17. Paluri Y, Heeralal M, Rathish Kumar P (2019) A study on the use of reclaimed asphalt pavement aggregates in pavement quality concrete. Cement Wapno Beton 24(6):421–431

    Article  Google Scholar 

  18. Singh S, Ransinchung GDRN, Kumar P (2019) Feasibility study of RAP aggregates in cement concrete pavements. Road Mater Pavement Des 20(1):151–170. https://doi.org/10.1080/14680629.2017.1380071

    Article  Google Scholar 

  19. Chakravarthi S, Shankar S (2018) Effect of age on reclaimed asphalt pavement mixes. Indian Highw 46(7):25–36

    Google Scholar 

  20. Wu Z, Zhang C, Xiao P, Li B, Kang A (2020) Performance characterization of hot mix asphalt with high RAP content and basalt fiber. Materials 13:3145. https://doi.org/10.3390/MA13143145

    Article  Google Scholar 

  21. Saed SA, Karimi HR, Rad SM, Aliha MRM, Shi X, Haghighatpour PJ (2022) Full range I/II fracture behavior of asphalt mixtures containing RAP and rejuvenating agent using two different 3-point bend type configurations. Constr Build Mater 314:125590. https://doi.org/10.1016/J.CONBUILDMAT.2021.125590

    Article  Google Scholar 

  22. Wu S, Marty C (2023) Three-year field performance of a low volume road with 100% reclaimed asphalt pavement cold mix with rejuvenator. Transp Res Record J Transp Res Board. https://doi.org/10.1177/03611981231153648

    Article  Google Scholar 

  23. Iwama M, Hayano K (2023) Influence of combined aging on the mechanical and physical properties of reclaimed asphalt pavement mixtures blended with rejuvenator agents. J Mater Cycles Waste Manag. https://doi.org/10.1007/S10163-023-01619-6

    Article  Google Scholar 

  24. Jahanbakhsh H, Karimi MM, Naseri H, Nejad FM (2019) Sustainable asphalt concrete containing high reclaimed pavements and recycling agents: performance assessment, cost analysis, and environmental impact. J Clean Prod 244:118837. https://doi.org/10.1016/j.jclepro.2019.118837

    Article  Google Scholar 

  25. Shi X, Mukhopadhyay A, Zollinger D (2019) Long-term performance evaluation of concrete pavements containing recycled concrete aggregate in Oklahoma. Transp Res Record J Transp Res Board 2673(5):1–14. https://doi.org/10.1177/0361198119839977

    Article  Google Scholar 

  26. Debbarma S, Ransinchung GDRN, Singh S, Debbarma S (2019) Suitability of various supplementary cementitious admixtures for RAP inclusive RCCP mixes mixes. Int J Pavement Eng. https://doi.org/10.1080/10298436.2019.1703981

    Article  Google Scholar 

  27. Singh S, Ransinchung GD, Kumar P (2017) Effect of mineral admixtures on fresh, mechanical and durability properties of RAP inclusive concrete. Constr Build Mater 156:19–27. https://doi.org/10.1016/j.conbuildmat.2017.08.144

    Article  Google Scholar 

  28. Singh S, Ransinchung GD, Kumar P (2017) An economical processing technique to improve RAP inclusive concrete properties. Constr Build Mater 148:734–747. https://doi.org/10.1016/j.conbuildmat.2017.05.030

    Article  Google Scholar 

  29. Debbarma S, Ransinchung GD (2021) Achieving sustainability in roller compacted concrete pavement mixes using reclaimed asphalt pavement aggregates—state of the art review. J Clean Prod 287:125078. https://doi.org/10.1016/J.JCLEPRO.2020.125078

    Article  Google Scholar 

  30. Magar S, Xiao F, Singh D, Showkat B (2022) Applications of reclaimed asphalt pavement in India—a review. J Clean Prod 335:130221. https://doi.org/10.1016/J.JCLEPRO.2021.130221

    Article  Google Scholar 

  31. El S, Ben E, El S, Khay E, Loulizi A (2017) Experimental investigation of PCC incorporating RAP. Int J Concr Struct Mater. https://doi.org/10.1186/s40069-018-0227-x

    Article  Google Scholar 

  32. Huang B, Shu X, Burdette EG (2006) Mechanical properties of concrete containing recycled asphalt pavements. Mag Concr Res 58(5):313–320

    Article  Google Scholar 

  33. Jaawani S, Franco A, de Luca G, Coppola O, Bonati A (2021) Limitations on the use of recycled asphalt pavement in structural concrete. Appl Sci 11(22):10901. https://doi.org/10.3390/APP112210901

    Article  Google Scholar 

  34. Singh S, Ransinchung GDRN, Monu K, Kumar P (2018) Laboratory investigation of RAP aggregates for dry lean concrete mixes. Constr Build Mater 166:808–816. https://doi.org/10.1016/j.conbuildmat.2018.01.131

    Article  Google Scholar 

  35. Mathias V, Sedran T, de Larrard F (2009) Modelling of mechanical properties of cement concrete incorporating reclaimed asphalt pavement. Road Mater Pavement Design 10(1):63–82. https://doi.org/10.1080/14680629.2009.9690182

    Article  Google Scholar 

  36. Guo S, Hu J, Dai Q (2018) A critical review on the performance of portland cement concrete with recycled organic components. J Clean Prod 188:92–112. https://doi.org/10.1016/J.JCLEPRO.2018.03.244

    Article  Google Scholar 

  37. Huang B, Shu X, Li G (2005) Laboratory investigation of portland cement concrete containing recycled asphalt pavements. Cem Concr Res 35(10):2008–2013. https://doi.org/10.1016/j.cemconres.2005.05.002

    Article  Google Scholar 

  38. Isola M, Betti G, Marradi A, Tebaldi G (2013) Evaluation of cement treated mixtures with high percentage of reclaimed asphalt pavement. Constr Build Mater 48:238–247. https://doi.org/10.1016/j.conbuildmat.2013.06.042

    Article  Google Scholar 

  39. Huang B, Shu X, Li G (2005) Laboratory investigation of portland cement concrete containing recycled asphalt pavements. Cem Concr Res 35:2008–2013. https://doi.org/10.1016/j.cemconres.2005.05.002

    Article  Google Scholar 

  40. Paluri Y, Mogili S, Mudavath H, Pancharathi RK (2020) A study on the influence of steel fibers on the performance of fine reclaimed asphalt pavement (FRAP) in pavement quality concrete. In: Materials today: proceedings. Elsevier, Amsterdam, pp 657–662. doi: https://doi.org/10.1016/j.matpr.2020.03.147

  41. Diptikanta MK, Sahdeo K et al (2023) Feasibility study of reclaimed asphalt pavements (RAP) as recycled aggregates used in rigid pavement construction. Materials 16(4):1504. https://doi.org/10.3390/MA16041504

    Article  Google Scholar 

  42. Al-mufti RL, Fried AN (2017) Improving the strength properties of recycled asphalt aggregate concrete. Constr Build Mater 149:45–52. https://doi.org/10.1016/j.conbuildmat.2017.05.056

    Article  Google Scholar 

  43. Brand AS, Roesler JR (2017) Bonding in cementitious materials with asphalt-coated particles: part II—cement-asphalt chemical interactions. Constr Build Mater 130:182–192. https://doi.org/10.1016/j.conbuildmat.2016.10.013

    Article  Google Scholar 

  44. Sokhansefat G, Ley MT, Cook MD, Alturki R, Moradian M (2019) Investigation of concrete workability through characterization of aggregate gradation in hardened concrete using X-ray computed tomography. Cem Concr Compos 98:150–161. https://doi.org/10.1016/j.cemconcomp.2019.02.008

    Article  Google Scholar 

  45. Reddy MS, Suvarna P (2016) A detailed study on reclaimed asphalt pavement in pavement quality cement. Int J Civil Eng Technol 7(5):382–392

    Google Scholar 

  46. Andrew B, Buyondo KA, Kasedde H, Kirabira JB, Olupot PW, Yusuf AA (2022) Investigation on the use of reclaimed asphalt pavement along with steel fibers in concrete. Case Stud Constr Mater. https://doi.org/10.1016/J.CSCM.2022.E01356

    Article  Google Scholar 

  47. Singh S, Ransinchung GDRN, Kumar P (2017) Feasibility study of RAP aggregates in cement concrete pavements. Road Mater Pavement Design 629:20. https://doi.org/10.1080/14680629.2017.1380071

    Article  Google Scholar 

  48. Singh S, Ransinchung GD, Debbarma S, Kumar P (2018) Utilization of reclaimed asphalt pavement aggregates containing waste from sugarcane mill for production of concrete mixes. J Clean Prod 174:42–52. https://doi.org/10.1016/j.jclepro.2017.10.179

    Article  Google Scholar 

  49. Bida SM, Danraka M, Mohammed J (2016) Performance of reclaimed asphalt pavement (RAP) as a replacement of fine aggregate in concrete. Int J Sci Res 5(4):2015–2017

    Google Scholar 

  50. Delwar M, Fahmy M, Taha R (1997) Use of reclaimed asphalt pavement as an aggregate in portland cement concrete. Mater J 94(3):251–256

    Google Scholar 

  51. Hossiney N, Tia M, Bergin MJ (2010) Concrete containing RAP for use in concrete pavement. Int J Pavement Res Technol 3(5):251

    Google Scholar 

  52. Shi X, Mukhopadhyay A, Liu KW (2017) Mix design formulation and evaluation of portland cement concrete paving mixtures containing reclaimed asphalt pavement. Constr Build Mater 152:756–768. https://doi.org/10.1016/j.conbuildmat.2017.06.174

    Article  Google Scholar 

  53. Singh GD, Ransinchung RN, Kumar P (2018) Laboratory investigation of concrete pavements containing fine RAP aggregates. J Mater Civil Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0002124

    Article  Google Scholar 

  54. Paluri Y, Noolu V, Mudavath H, Pancharathi RK (2021) Flexural fatigue behavior of steel fiber-reinforced reclaimed asphalt pavement-based concrete: an experimental study. Pract Period Struct Design Constr. https://doi.org/10.1061/(asce)sc.1943-5576.0000540

    Article  Google Scholar 

  55. Masi G, Michelacci A, Manzi S, Bignozzi MC (2022) Assessment of reclaimed asphalt pavement (RAP) as recycled aggregate for concrete. Constr Build Mater 341:127745. https://doi.org/10.1016/J.CONBUILDMAT.2022.127745

    Article  Google Scholar 

  56. Mahdavi A, Moghaddam AM, Dareyni M (2021) Durability and mechanical properties of roller compacted concrete containing coarse reclaimed asphalt pavement. Baltic J Road Bridge Eng 16(3):82–110. https://doi.org/10.7250/BJRBE.2021-16.533

    Article  Google Scholar 

  57. Mahmoud E, Ibrahim A, El-Chabib H, Patibandla VC (2013) Self-consolidating concrete incorporating high volume of fly ash, slag, and recycled asphalt pavement. Int J Concr Struct Mater 7(2):155–163. https://doi.org/10.1007/s40069-013-0044-1

    Article  Google Scholar 

  58. Nandi S, Ransinchung GDRN (2021) Performance evaluation and sustainability assessment of precast concrete paver blocks containing coarse and fine RAP fractions: a comprehensive comparative study. Constr Build Mater 300:124042. https://doi.org/10.1016/J.CONBUILDMAT.2021.124042

    Article  Google Scholar 

  59. Bittencourt SV, da Silva Magalhães M, da Nóbrega Tavares ME (2021) Mechanical behavior and water infiltration of pervious concrete incorporating recycled asphalt pavement aggregate. Case Stud Constr Mater 14:e00473. https://doi.org/10.1016/J.CSCM.2020.E00473

    Article  Google Scholar 

  60. Hassan KE, Brooks JJ, Erdman M (2000) The use of reclaimed asphalt pavement (RAP) aggregates in concrete. Waste Manag Ser 1:121–128. https://doi.org/10.1016/S0713-2743(00)80024-0

    Article  Google Scholar 

  61. Ferrebee EC, Brand AS, Kachwalla AS, Roesler JR, Gancarz DJ, Pforr JE (2014) Fracture properties of roller-compacted concrete with virgin and recycled aggregates. Transp Res Record. https://doi.org/10.3141/2441-17

    Article  Google Scholar 

  62. Soltanabadi R, Behfarnia K (2022) Shear strength of reinforced concrete deep beams containing recycled concrete aggregate and recycled asphalt pavement. Constr Build Mater 314:125597. https://doi.org/10.1016/J.CONBUILDMAT.2021.125597

    Article  Google Scholar 

  63. Soltanabadi R, Behfarnia K (2022) Evaluation of mechanical properties of concrete containing recycled concrete aggregate and recycled asphalt pavement. J Mater Civ Eng 34(12):04022348. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004514

    Article  Google Scholar 

  64. Liu H et al (2022) “Investigation on mechanical behaviors of self-compacting concrete containing reclaimed asphalt pavement. Constr Build Mater 346:128421. https://doi.org/10.1016/J.CONBUILDMAT.2022.128421

    Article  Google Scholar 

  65. Debbarma S, Ransinchung GD, Singh S (2019) Feasibility of roller compacted concrete pavement containing different fractions of reclaimed asphalt pavement. Constr Build Mater 199:508–525. https://doi.org/10.1016/j.conbuildmat.2018.12.047

    Article  Google Scholar 

  66. Debbarma S, Suresh Singh GD, Ransinchung RN (2019) Laboratory investigation on the fresh, mechanical, and durability properties of roller compacted concrete pavement containing reclaimed asphalt pavement aggregates. Transp Res Rec. https://doi.org/10.1177/0361198119849585

    Article  Google Scholar 

  67. Settari C, Debieb F, Kadri EH, Boukendakdji O (2015) Assessing the effects of recycled asphalt pavement materials on the performance of roller compacted concrete. Constr Build Mater 101:617–621. https://doi.org/10.1016/j.conbuildmat.2015.10.039

    Article  Google Scholar 

  68. Modarres A, Hosseini Z (2014) Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material. Mater Des 64:227–236. https://doi.org/10.1016/j.matdes.2014.07.072

    Article  Google Scholar 

  69. Debbarma S, Ransinchung GD, Singh S (2021) Suitability of various supplementary cementitious admixtures for RAP inclusive RCCP mixes. Int J Pavement Eng 22(12):1568–1581. https://doi.org/10.1080/10298436.2019.1703981

    Article  Google Scholar 

  70. Tantri A, Nayak G, Kamath M, Shenoy A, Shetty KK (2021) Utilization of cashew nut-shell ash as a cementitious material for the development of reclaimed asphalt pavement incorporated self compacting concrete. Constr Build Mater 301:124197. https://doi.org/10.1016/J.CONBUILDMAT.2021.124197

    Article  Google Scholar 

  71. Ghazy MF, Abd Elaty MAA, Abo-Elenain MT (2021) Characteristics and optimization of cement concrete mixes with recycled asphalt pavement aggregates. Innov Infrastruct Solut 7(1):1–15. https://doi.org/10.1007/S41062-021-00651-5

    Article  Google Scholar 

  72. Ashteyat A, Obaidat A, Kirgiz M, AlTawallbeh B (2021) Production of roller compacted concrete made of recycled asphalt pavement aggregate and recycled concrete aggregate and silica fume. Int J Pavement Res Technol 15(4):987–1002. https://doi.org/10.1007/S42947-021-00068-4

    Article  Google Scholar 

  73. Rezaei MR, Abdi Kordani A, Zarei M (2020) Experimental investigation of the effect of micro silica on roller compacted concrete pavement made of recycled asphalt pavement materials. Int J Pavement Eng 23(5):1353–1367. https://doi.org/10.1080/10298436.2020.1802024

    Article  Google Scholar 

  74. Roy D, Choudhary L, Sharma N, Sharma N (2018) Study on physical properties of quaternary cement concrete with novocon XR steel fibers. Int J Sustain Building Technol Urban Develop 9(4):197–208. https://doi.org/10.22712/SUSB.20180020

    Article  Google Scholar 

  75. Ram Kumar BAV, Ramakrishna G (2022) Sustainable use of red mud and reclaimed asphalt pavement wastes in roller compacted concrete. Int J Pavement Res Technol. https://doi.org/10.1007/S42947-022-00236-0

    Article  Google Scholar 

  76. Teja Prathipati SRR, Paluri Y, Vijay K, Bhavita Chowdary V (2022) Evaluating the feasibility of blending fly ash and quarry dust in high-strength concrete to develop a sustainable concrete: a study on the mechanical and durability properties. IOP Conf Ser Earth Environ Sci 1086(1):012060. https://doi.org/10.1088/1755-1315/1086/1/012060

    Article  Google Scholar 

  77. Brand AS, Roesler JR (2015) Ternary concrete with fractionated reclaimed asphalt pavement. ACI Mater J 112(1):155–163

    Google Scholar 

  78. Mukhopadhyay A, Shi X (2018) “Microstructural characterization of portland cement concrete containing reclaimed asphalt pavement aggregates using conventional and advanced petrographic techniques”, ASTM special technical publication. STP 1613:187–206. https://doi.org/10.1520/STP161320180008

    Article  Google Scholar 

  79. Paluri Y, Mogili S, Mudavath H, Noolu V (2020) Effect of fibres on the strength and toughness characteristics of recycled aggregate concrete. In: Materials today: proceedings. Elsevier, Amsterdam, pp 2537–2540. doi: https://doi.org/10.1016/j.matpr.2020.07.555

  80. Koniki S, Kasagani H, Prathipati SRRT, Paluri Y (2021) Mechanical behavior of triple-blended hybrid fiber-reinforced concrete: an experimental and numerical study. Innov Infrastruct Solut 6(3):1–14. https://doi.org/10.1007/S41062-021-00526-9/METRICS

    Article  Google Scholar 

  81. Vijay K, Prathipati SRRT, Sagar TS, Paluri Y (2023) Evaluating the effect of steel fibers on the mechanical performance of high-volume fly ash concrete. IOP Conf Ser Earth Environ Sci 1130(1):12018. https://doi.org/10.1088/1755-1315/1130/1/012018

    Article  Google Scholar 

  82. Al-Oraimi S, Hassan HF, Hago A (2009) Recycling of reclaimed asphalt pavement in Portland cement concrete. J Eng Res 6(1):37–45. https://doi.org/10.24200/TJER.VOL6ISS1PP37-45

    Article  Google Scholar 

  83. Okafor FO (2010) Performance of recycled asphalt pavement as coarse aggregate in concrete. Leonardo Electron J Pract Technol 17(9):47–58

    Google Scholar 

  84. Brand AS, Amirkhanian AN, Roesler JR (2014) Flexural capacity of full-depth and two-lift concrete slabs with recycled aggregates. Transp Res Record 2456:64–72. https://doi.org/10.3141/2456-07

    Article  Google Scholar 

  85. Khodair Y, Raza M (2017) Sustainable self-consolidating concrete using recycled asphalt pavement and high volume of supplementary cementitious materials. Constr Build Mater 131:245–253. https://doi.org/10.1016/J.CONBUILDMAT.2016.11.044

    Article  Google Scholar 

  86. Thomas RJ, Fellows AJ, Sorensen AD (2018) Durability analysis of recycled asphalt pavement as partial coarse aggregate replacement in a high-strength concrete mixture. J Mater Civ Eng 30(5):04018061. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002262

    Article  Google Scholar 

  87. Abraham SM, Ransinchung GDRN (2018) Strength and permeation characteristics of cement mortar with reclaimed asphalt pavement aggregates. Constr Build Mater 167:700–706. https://doi.org/10.1016/j.conbuildmat.2018.02.075

    Article  Google Scholar 

  88. Abraham SM, Ransinchung GDRN (2018) Influence of RAP aggregates on strength, durability and porosity of cement mortar. Constr Build Mater 189:1105–1112. https://doi.org/10.1016/J.CONBUILDMAT.2018.09.069

    Article  Google Scholar 

  89. Fakhri M, Amoosoltani E (2017) The effect of reclaimed asphalt pavement and crumb rubber on mechanical properties of roller compacted concrete pavement. Constr Build Mater 137:470–484. https://doi.org/10.1016/j.conbuildmat.2017.01.136

    Article  Google Scholar 

  90. El Euch Ben S, Said S, Euch Khay A (2018) Experimental investigation of PCC incorporating RAP. Int J Concr Struct Mater 12(1):1–11. https://doi.org/10.1186/S40069-018-0227-X/FIGURES/16

    Article  Google Scholar 

  91. Singh S, Ransinchung GDRN (2018) Durability properties of pavement quality concrete containing fine RAP. Adv Civ Eng Mater. https://doi.org/10.1520/ACEM20180012

    Article  Google Scholar 

  92. Singh GD, Ransinchung RN, Kumar P (2018) Performance evaluation of RAP concrete in aggressive environment. J Mater Civil Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0002316

    Article  Google Scholar 

  93. Singh S, Ransinchung GD, Monu K (2019) Sustainable lean concrete mixes containing wastes originating from roads and industries. Constr Build Mater 209:619–630. https://doi.org/10.1016/j.conbuildmat.2019.03.122

    Article  Google Scholar 

  94. Nwaubani SO, Parsons LA (2021) Properties, durability and microstructure of concrete incorporating waste electrical and electronic plastics as partial replacement for aggregates in concrete. Case Stud Constr Mater 15:e00731. https://doi.org/10.1016/J.CSCM.2021.E00731

    Article  Google Scholar 

  95. Vijay K, Murmu M (2022) A review on basalt fibre reinforced concrete. Int J Struct Eng 12(4):388. https://doi.org/10.1504/IJSTRUCTE.2022.126195

    Article  Google Scholar 

  96. Shi X, Mukhopadhyay A, Zollinger D, Grasley Z (2019) Economic input-output life cycle assessment of concrete pavement containing recycled concrete aggregate. J Clean Prod 225:414–425. https://doi.org/10.1016/J.JCLEPRO.2019.03.288

    Article  Google Scholar 

  97. Roh S, Kim R, Park WJ, Ban H (2020) Environmental evaluation of concrete containing recycled and by-product aggregates based on life cycle assessment. Appl Sci 10:7503. https://doi.org/10.3390/APP10217503

    Article  Google Scholar 

  98. Shi X, Grasley Z, Mukhopadhyay A, Zollinger D (2020) Use of recycled aggregates in concrete pavement: pavement design and life cycle assessment. Pavement Roadway Bridge Life Cycle Assess 2020:324–332. https://doi.org/10.1201/9781003092278-34

    Article  Google Scholar 

  99. Mariyappan R, Palammal JS, Balu S (2023) Sustainable use of reclaimed asphalt pavement (RAP) in pavement applications—a review. Environ Sci Pollut Res 30(16):45587–45606. https://doi.org/10.1007/S11356-023-25847-3/METRICS

    Article  Google Scholar 

  100. Anastasiou EK, Liapis A, Papayianni I (2015) Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials. Resour Conserv Recycl 101:1–8. https://doi.org/10.1016/J.RESCONREC.2015.05.009

    Article  Google Scholar 

  101. Chou CP, Lee N (2015) Assessment of life cycle energy saving and carbon reduction of using reclaimed asphalt concrete. In: Environmental sustainability in transportation infrastructure—selected papers from the international symposium on systematic approaches to environmental sustainability in transportation, pp. 200–212. doi: https://doi.org/10.1061/9780784479285.017

  102. Singh D, Shintre GD, Ransinchung RN, Kumar P (2018) Performance of fine RAP concrete containing flyash, silica fume, and bagasse ash. J Mater Civil Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0002408

    Article  Google Scholar 

  103. Debbarma S, Ransinchung GD, Singh S, Sahdeo SK (2020) Utilization of industrial and agricultural wastes for productions of sustainable roller compacted concrete pavement mixes containing reclaimed asphalt pavement aggregates. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2019.104504

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Initial idea and literature review done by Dr. Yeswanth Paluri and Dr. Kunamineni Vijay. Methodology and experimental work done by M Satyanarayana Reddy, I Venkateswara Rao, Korrapolu John, and N Dayanand. All the authors are involved in the writing and reviewing of the paper.

Corresponding author

Correspondence to Yeswanth Paluri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijay, K., Paluri, Y., Reddy, M.S. et al. Performance evaluation of reclaimed asphalt pavement (RAP) aggregate in concrete pavements: a state-of-the-art review. J Build Rehabil 8, 90 (2023). https://doi.org/10.1007/s41024-023-00335-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41024-023-00335-w

Keywords

Navigation