Skip to main content
Log in

Flows of Liquefied Filtered Tailings: Laboratory-Scale Physical and Numerical Modeling

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The numerical prediction of the runout and spread of liquefied-tailings flows is a complex problem that depends on many factors, including the rheological properties of the liquefied tailings. However, published benchmark problems specific to tailings flows, useful for validation and calibration of numerical models, are virtually nonexistent. This paper presents a laboratory-scale benchmark problem of liquefied-tailings flow. Gold filtered tailings were characterized via rheological measurements, geotechnical index tests, and toxicity chemical analysis. Physical flow experiments of the liquefied-tailings paste, at 70% solids concentration, were carried out in an instrumented laboratory flume with high-speed video and direct measurements of the at-rest “footprint” (lobe) dimensions. Subsequently, using the measured physical parameters, computational fluid dynamics (CFD) tools were used to solve the three-dimensional, rheology-dependent Navier–Stokes equations via the finite-volume method and a multiphase volume-of-fluid (VOF) technique. Thus, the at-rest lobe of the spilled tailings was numerically reproduced. Results show that the liquefied tailings bear nearly zero-yield stress and low viscosity, thereby practically behaving as a Newtonian fluid despite their high solid concentration. In addition, good agreement (within 14% of the main dimensions) was found between the physical and numerically simulated at-rest lobes. Hence, the use of a Navier–Stokes approach, supported on a finite-volume/VOF technique, and a Newtonian-fluid constitutive rheological model, simulates well the at-rest shape of liquefied tailings at laboratory scale. This benchmark problem will aid numerical research specific to tailings flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. McDermott RK, Sibley JM (2000) The Aznalcóllar tailings dam accident—a case study. Miner Resour Eng 9:101–118. https://doi.org/10.1142/S0950609800000111

    Article  Google Scholar 

  2. Rico M, Benito G, Díez Herrero A (2008) Floods from tailings dam failures. J Hazard Mater 154:79–87. https://doi.org/10.1016/j.jhazmat.2007.09.110

    Article  Google Scholar 

  3. Santamarina JC, Torres-Cruz LA, Bachus RC (2019) Why coal ash and tailings dam disasters occur. Science 364:526–528. https://doi.org/10.1126/science.aax1927

    Article  Google Scholar 

  4. Blight GE, Fourie AB (2005) Catastrophe revisited—disastrous flow failures of mine and municipal solid waste. Geotech Geol Eng 23:219–248. https://doi.org/10.1007/s10706-004-7067-y

    Article  Google Scholar 

  5. ICOLD (2001) Tailings Dams—Risk of dangerous occurrences. Lessons learnt from practical experiences—Bulletin 121, International Commission on Large Dams, Paris. ISBN: 9280720538 9789280720532

  6. Marr A (2019) Geotechnical aspects of tailings dams & their failures. https://tinyurl.com/Marr-Slides. Accessed 5 Sept 2019

  7. Eriksson N, Adamek P (2000) The tailings pond failure at the Aznalcóllar mine, Spain. In: Sixth international symposium on environmental issues and management of waste in energy and mineral production, pp 109–116

  8. Zabala F, Alonso EE (2011) Progressive failure of Aznalcollar dam using the material point method. Geotechnique 61:795–808. https://doi.org/10.1680/geot.9.P.134

    Article  Google Scholar 

  9. Gens A, Alonso EE (2006) Aznalcóllar dam failure. Part 2: Stability conditions and failure mechanism. Geotechnique 56:185–201. https://doi.org/10.1680/geot.2006.56.3.185

    Article  Google Scholar 

  10. Alonso EE, Gens A (2006) Aznalcóllar dam failure. Part 1: Field observations and material properties. Geotechnique 56:165–183. https://doi.org/10.1680/geot.2006.56.3.165

    Article  Google Scholar 

  11. Olalla C, Cuellar V (2001) Failure mechanism of the Aznalcollar Dam, Seville, Spain. Geotechnique 51:399–406

    Article  Google Scholar 

  12. Alonso EE, Gens A (2006) Aznalcóllar dam failure. Part 3: Dynamics of the motion. Geotechnique 56:203–210. https://doi.org/10.1680/geot.2006.56.3.203

    Article  Google Scholar 

  13. Blight GE, Fourie AB (2003) A review of catastrophic flow failures of deposits of mine waste and municipal refuse. In: Introductory report of the international workshop on occurrence and mechanisms of flows in natural slopes and earthfills, IW- FLOWS2003, Associazione Geotecnica Italiana (AGI), Sorrento, Italy, 14–16 May 2003.

  14. Morgenstern N, Vick SG, Viotti C, Watts BD (2016) Fundao tailings dam review panel: Report in the immediate causes of the failure of the Fundao Dam, New York

  15. Reid D (2019) Additional analyses of the fundão tailings storage facility in situ state and triggering conditions. J Geotech Geoenvironmental Eng 145:04019088. https://doi.org/10.1061/(asce)gt.1943-5606.0002123

    Article  Google Scholar 

  16. Hudson-Edwards K (2016) Tackling mine wastes. Science 352:288–290. https://doi.org/10.1126/science.aaf3354

    Article  Google Scholar 

  17. Clayton S, Grice TG, Boger DV (2003) Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int J Miner Process 70:3–21. https://doi.org/10.1016/S0301-7516(02)00148-5

    Article  Google Scholar 

  18. Gao J, Fourie A (2015) Using the flume test for yield stress measurement of thickened tailings. Miner Eng 81:116–127. https://doi.org/10.1016/j.mineng.2015.07.013

    Article  Google Scholar 

  19. Julien PY, León CS (2000) Mudfloods, mudflows and debris flows, classification in rheology and structural design. In: Proceedings of the international workshop on the debris flow disaster of December 1999 in Venezuela, Universidad Central de Venezuela, Caracas, Venezuela, p 15

  20. Zhang S, Zhang L, Qi Q, Li Q, Shi P (2015) Numerical simulation of the characteristics of debris flow. Int J Heat Technol 33:127–132

    Article  Google Scholar 

  21. Nguyen QD, Boger DV (1998) Application of rheology to solving tailings disposal problems. Int J Miner Process 54:217–233. https://doi.org/10.1016/S0301-7516(98)00011-8

    Article  Google Scholar 

  22. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite method, 2nd edn. Longman Scientific & Technical, Essex

    Google Scholar 

  23. Gao J, Fourie A (2015) Spread is better: an investigation of the mini-slump test. Miner Eng 71:120–132. https://doi.org/10.1016/j.mineng.2014.11.001

    Article  Google Scholar 

  24. Satpathy K, Velusamy K, Patnaik BSV, Chellapandi P (2011) Numerical investigation of vortex shedding past a finite circular cylinder mounted on a flat plate. Numer Heat Transf Part A Appl 59:882–909. https://doi.org/10.1080/10407782.2011.578012

    Article  Google Scholar 

  25. Lin T, Liu GR (2017) A development of a GSM-CFD solver for non-Newtonian flows. Comput Fluids 142:57–71. https://doi.org/10.1016/j.compfluid.2016.09.009

    Article  MathSciNet  MATH  Google Scholar 

  26. Yabusaki SB, Şengör SS, Fang Y (2015) A uranium bioremediation reactive transport benchmark. Comput Geosci 19:551–567. https://doi.org/10.1007/s10596-015-9474-y

    Article  Google Scholar 

  27. Mayer KU, Alt-Epping P, Jacques D, Arora B, Steefel CI (2015) Benchmark problems for reactive transport modeling of the generation and attenuation of acid rock drainage. Comput Geosci 19:599–611. https://doi.org/10.1007/s10596-015-9476-9

    Article  MathSciNet  Google Scholar 

  28. Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River

    Google Scholar 

  29. Robertson PK (2010) Evaluation of flow liquefaction and liquefied strength using the cone penetration test. J Geotech Geoenvironmental Eng 136:842–853. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000286

    Article  Google Scholar 

  30. Pastor M, Quecedo M, Fernández Merodo JA, Herrores MI, González E, Mira P (2002) Modelling tailings dams and mine waste dumps failures. Géotechnique 52:579–591

    Article  Google Scholar 

  31. Highter WH, Tobin RF (1980) Flow slides and the undrained brittleness index of some mine tailings. Eng Geol 16:71–82. https://doi.org/10.1016/0013-7952(80)90008-3

    Article  Google Scholar 

  32. Hungr O (2008) Simplified models of spreading flow of dry granular material. Can Geotech J 1:1–26

    Google Scholar 

  33. Hungr O, Mcdougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992. https://doi.org/10.1016/j.cageo.2007.12.003

    Article  Google Scholar 

  34. Hutter K, Wang Y, Pudasaini SP (2005) The Savage-Hutter avalanche model: How far can it be pushed? Philos Trans R Soc A Math Phys Eng Sci 363:1507–1528. https://doi.org/10.1098/rsta.2005.1594

    Article  MathSciNet  MATH  Google Scholar 

  35. Gheshlaghi ME, Goharrizi AS, Shahrivar AA (2013) Simulation of a semi-industrial pilot plant thickener using CFD approach. Int J Min Sci Technol 23:63–68

    Article  Google Scholar 

  36. Chen L, Duan Y, Pu W, Zhao C (2009) CFD simulation of coal-water slurry flowing in horizontal pipelines. Korean J Chem Eng 26:1144–1154. https://doi.org/10.1007/s11814-009-0190-y

    Article  Google Scholar 

  37. Jeong SW, Locat J, Torrance JK, Leroueil S (2015) Thixotropic and anti-thixotropic behaviors of fine-grained soils in various flocculated systems. Eng Geol 196:119–125. https://doi.org/10.1016/j.enggeo.2015.07.014

    Article  Google Scholar 

  38. Niroshan N, Sivakugan N, Veenstra RL (2018) Flow characteristics of cemented paste backfill. Geotech Geol Eng 36:2261–2272. https://doi.org/10.1007/s10706-018-0460-8

    Article  Google Scholar 

  39. Dai Z, Huang Y, Jiang F, Huang M (2016) Modeling the flow behavior of a simulated municipal solid waste. Bull Eng Geol Environ 75:275–291. https://doi.org/10.1007/s10064-015-0735-8

    Article  Google Scholar 

  40. Huang Y, Mao W, Zheng H, Li G (2012) Computational fluid dynamics modeling of post-liquefaction soil flow using the volume of fluid method. Bull Eng Geol Environ 71:359–366. https://doi.org/10.1007/s10064-011-0386-3

    Article  Google Scholar 

  41. O’Brien BJS, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119:244–261

    Article  Google Scholar 

  42. Environmental Protection Agency (1992) Method 1331—Toxicity Characteristic Leaching Procedure. 1311-1–1311-35. https://www.epa.gov/sites/production/files/2015-12/documents/1311.pdf. Accessed 1 July 2017

  43. Inc Brookfield Engineering Laboratories (2007) Brookfield digital rheometer model DV-III operating instructions manual. Brookfield Engineering Laboratories, Inc., Middleboro

    Google Scholar 

  44. Valencia-Galindo MD, Beltrán-Rodriguez LN, Sánchez-Peralta JA, Tituaña-Puente JS, Trujillo-Vela MG, Larrahondo JM, Prada-Sarmiento LF, Ramos-Cañón AM (2018) A two-dimensional laser-scanner system for geotechnical processes monitoring. In: McNamara et al. (ed) Physical modelling in geotechnics. Taylor & Francis Group, London, pp 865–870

  45. Clemente JLM, Snow RE, Bernedo C, Strachan CL, Fourie A (2013) Dam break analysis applied to tailings dams: USSD workshop summary and perspectives. In: 33rd Annual USSD Conference. U.S. Society on Dams, Phoenix, Arizona, pp 273–297

  46. Ye T, Mittal R, Udaykumar HS, Shyy W (1999) An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156:209–240

    Article  MathSciNet  Google Scholar 

  47. Wang Y, Su K, Wu HG, Qian ZD (2017) Flow characteristics of large hydropower bifurcation under structure rounding optimization. Int J Civ Eng 15:515–529. https://doi.org/10.1007/s40999-016-0091-5

    Article  Google Scholar 

  48. Jeong W, Seong J (2014) Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods. Int J Mech Sci 78:19–26

    Article  Google Scholar 

  49. Environmental Protection Agency (2006) 40 CFR—Part 261.24—Toxicity characteristic. 59–60. https://www.govinfo.gov/content/pkg/CFR-2004-title40-vol24/pdf/CFR-2004-title40-vol24-sec261-24.pdf. Accessed 1 July 2017

  50. Li W, Coop MR, Senetakis K, Schnaid F (2018) The mechanics of a silt-sized gold tailing. Eng Geol 241:97–108. https://doi.org/10.1016/j.enggeo.2018.05.014

    Article  Google Scholar 

Download references

Acknowledgements

Pontificia Universidad Javeriana (Vicerrectoría de Investigación) provided partial support for this research through the research Grant No. 6575. The Department of Civil Engineering of Pontificia Universidad Javeriana also provided partial support. The sponsors had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the article for publication. The authors are also grateful for the support of Dr. Diego Cobos from Dynami Geoconsulting, Colombia, who provided the tailings and valuable technical comments. Likewise, they would like to thank the comments of Dr. Alfonso M. Ramos-Cañón and Dr. Jorge A. Escobar-Vargas of Pontificia Universidad Javeriana, and Dr. Miguel A. Cabrera of Universidad de Los Andes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan M. Larrahondo.

Additional information

John A. Sánchez-Peralta: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Peralta, J.A., Beltrán-Rodríguez, L.N., Trujillo-Vela, M.G. et al. Flows of Liquefied Filtered Tailings: Laboratory-Scale Physical and Numerical Modeling. Int J Civ Eng 18, 393–404 (2020). https://doi.org/10.1007/s40999-019-00482-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-019-00482-7

Keywords

Navigation