Skip to main content
Log in

Impedance Bandwidth Enhancement of a Novel Fabricated Fractal Patch Antenna Using Invasive Weed Optimization Algorithm

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the possibility of different configurations of a novel Koch fractal geometry for the miniaturization and broad banding of a microstrip patch antenna, while maintaining its gain and radiation pattern, is investigated. To achieve the best results, the invasive weed optimization (IWO) algorithm, which is shown to be very robust and adaptive, is used for optimization. The whole design procedure is auto-controlled by linking, the high-frequency structure simulator with MATLAB software. For the first configuration, IWO is used to find the best location of feed point to minimize the return loss, e.g., S 11 (\(\left| {S_{11} } \right| < {-}10\;{\text{dB}}\)) and hence increasing the radiation efficiency of the proposed antenna. \(\left| {S_{11} } \right|\) of about −40 dB was achieved. Next, the proposed fractal with air-filled substrate and a ring slit is presented. The key design parameters such as air gap height, the slot gap width, location of feed point have been optimized using IWO to obtain the best possible bandwidth. Simulation results show a fractional impedance bandwidth of about 40% (2.42–3.59 GHz). This band is used by weather radar and some communication satellites. Gain and radiation pattern of the proposed antenna are acceptable within the frequency bandwidth. A prototype of the antenna is also fabricated and tested. Measured parameters are in good agreement with the simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Coleman C, Rothwell E (2004) Investigation of simulated annealing, ant-colony and genetic algorithm for self-structing antennas. IEEE Trans Antennas Propag 52(4):1007–1014

    Article  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern 26(1):29–41

    Article  Google Scholar 

  • Gianvittori J, Rahmat-Samii Y (2002) Fractal antenna: a novel antenna miniaturization technique and applications. IEEE Antenna Propagat 44(1):20–36

    Article  Google Scholar 

  • Haupt R (1995) An introduction to genetic algorithm for electromagnetics. IEEE Antenna Propag Mag 37:7–15

    Article  Google Scholar 

  • Holland J (1992) Genetic algorithm. Sci Am 267:62–72

  • Howell J (1975) Microstrip antennas. IEEE Trans Antenna Propag Mag 23:90–93

    Article  Google Scholar 

  • Karimshahi S, Kishk A (2010) Invasive weed optimization and its features in electromagnetics. IEEE Trans Antenna Propag 58(4):1269–1278

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE conference on neural networks IV

  • Mallahzadeh A, Oraizi H, Davoodi-Rad Z (2008) Application of invasive weed optimization technique for antenna configurations. Prog Electromagn Res 79:137–150

    Article  Google Scholar 

  • Mallahzadeh A, Eshaghi S, Alipour A (2009) Design of E-shaped MIMIO antenna using IWO algorithm for wireless application at 5 GHz. Prog Electromagn Res 90:187–203

    Article  Google Scholar 

  • Mehrabian A, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inf 1(4):355–366

    Article  Google Scholar 

  • Mohamadi F, Komjani N, Mousavi P (2011) Application of invasive weed optimization to design a broadband patch antenna with symmetric radiation pattern. IEEE Antenna Wirel Propag Lett 10:1369–1372

    Article  Google Scholar 

  • Oraizi H, Hedayati S (2012) Miniaturization of microstrip antennas by the novel application of the Giuseppe Peano fractal geometries. IEEE Trans Antenna Propag 60(8):3559–3567

    Article  MathSciNet  MATH  Google Scholar 

  • Oraizi H, Soleimani H (2014) Miniaturisation of the triangular patch antennas by the novel dual-reverse-arrow fractal. IET Microw Antenna Propag 9(7):627–633

    Article  Google Scholar 

  • Oraizi H, Soleimani H (2016) Miniaturization and dual-banding of an elevated slotted patch antenna using the novel dual-reverse-arrow fractal. Int J RF Microw Comput Aided Eng 27(5):1–9

  • Otten R, Ginnekent L (1989) The annealing algorithm. Kluwer Academic, Boston

    Book  Google Scholar 

  • Peitgen H, Jurgens H, Saupe D (1992) Chaos and Fractals: new frontiers of science. Springer, New York

    Book  MATH  Google Scholar 

  • Puente C, Romeu J, Cardama R (1998) On the behavior of the Sierpinski multiband fractal antenna. IEEE Trans Antenna Propag 9(7):517–524

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antenna Propag 52(2):397–407

    Article  MathSciNet  MATH  Google Scholar 

  • Rusu M, Hirvonen M, Rahimi H, Enoksson P, Rusu C (2008) Minkowski fractal microstrip antenna for RFID tags. In: Proceedings of 38th European microwave conference, Amsterdam, Holland

  • Sedighy S, Mallahzadeh A, Soleimani M, Rashed-Mohassel J (2011) Optimization of printed yagi antenna using invasive weed optimization (IWO). IEEE Antenna Wirel Propag Lett 9:1275–1278

    Article  Google Scholar 

  • Werner D, Ganguly S (2003) An overview of fractal antenna engineering research. IEEE Antenna Propag Mag 45(1):23–29

    Google Scholar 

  • Werner D, Mittra R (2000) Frontiers in electromagnetics. IEEE Press, New Jersey

    Google Scholar 

  • Wong K-L (2002) Compact and broadband microstrip antennas. Wiley, Amsterdam

    Book  Google Scholar 

  • Xue-ying Z, Yu-die W, Shengiying L, Wen-bin Z, Jin-xiang W (2011) Broadband circularly polarized antenna with a T-type fractal boundary wide-slot and L-shaped strip. In: Proceedings of microwave conference on (CJMW)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Emamghorashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emamghorashi, A., Mohajeri, F. Impedance Bandwidth Enhancement of a Novel Fabricated Fractal Patch Antenna Using Invasive Weed Optimization Algorithm. Iran J Sci Technol Trans Electr Eng 41, 205–217 (2017). https://doi.org/10.1007/s40998-017-0036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-017-0036-2

Keywords

Navigation