Skip to main content
Log in

Formulas for Chebotarev densities of Galois extensions of number fields

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

We generalize the Chebotarev density formulas of Dawsey (Res Number Theory 3:27, 2017) and Alladi (J Number Theory 9:436–451, 1977) to the setting of arbitrary finite Galois extensions of number fields L / K. In particular, if \(C \subset G = {{\mathrm{Gal}}}(L/K)\) is a conjugacy class, then we establish that the Chebotarev density is the following limit of partial sums of ideals of K:

$$\begin{aligned} -\lim _{X\rightarrow \infty } \sum _{\begin{array}{c} 2\le N(I)\le X \\ I \in S(L/K; C) \end{array}} \frac{\mu _K(I)}{N(I)} = \frac{|C|}{|G|}, \end{aligned}$$

where \(\mu _K(I)\) denotes the generalized Möbius function and S(L / KC) is the set of ideals \(I\subset \mathcal {O}_K\) such that I has a unique prime divisor \(\mathfrak {p}\) of minimal norm and the Artin symbol \(\left[ \frac{L/K}{\mathfrak {p}}\right] \) is C. To obtain this formula, we generalize several results from classical analytic number theory, as well as Alladi’s concept of duality for minimal and maximal prime divisors, to the setting of ideals in number fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alladi, K.: Duality between prime factors and an application to the prime number theorem for arithmetic progressions. J. Number Theory 9, 436–451 (1977)

    Article  MathSciNet  Google Scholar 

  2. Dawsey, M.: A new formula for chebotarev densities. Res.n Number Theory 3, 27 (2017)

    Article  MathSciNet  Google Scholar 

  3. Lagarias, J.C., Odlyzko, A.: Effective versions of the chebotarev density theorem. Proceeding of the Symposium University. Durham, pp 409–464 (1975)

  4. Landau, E.: Ueber die zahlentheoretische funktion \(\mu (n)\) und ihre beziehung zum goldbachschen satz. Nachr. Ges. Wiss. Gött. Math.-Phys. Kl. 1900, 177–186 (1900)

    Google Scholar 

  5. Landau, E.: Neuer beweis des primzahlsatzes und beweis des primidealsatzes. Math. Ann. 56, 645–670 (1903)

    Article  MathSciNet  Google Scholar 

  6. Moree, P.: An interval result for the number field \(\psi (x, y)\) function. Manuscr. Math. 76, 437–450 (1992)

    Article  MathSciNet  Google Scholar 

  7. Murty, M.R., Order, J.V.: Counting integral ideals in a number field. Expos. Math. 25(1), 53–66 (2007)

    Article  MathSciNet  Google Scholar 

  8. Shapiro, H.N.: An elementary proof of the prime ideal theorem. Commun. Pure Appl. Math. 2(4), 309–323 (1949)

    Article  MathSciNet  Google Scholar 

Download references

Author's contributions

Acknowlegements

The authors would like to thank Professor Ken Ono and Professor Larry Rolen for their guidance and suggestions. They also thank Emory University, the Asa Griggs Candler Fund, and NSF grant DMS-1557960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweeting, N., Woo, K. Formulas for Chebotarev densities of Galois extensions of number fields. Res. number theory 5, 4 (2019). https://doi.org/10.1007/s40993-018-0142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-018-0142-x

Navigation