Skip to main content

Advertisement

Log in

Subtle change in the work hardening behavior of fcc materials processed by selective laser melting

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Single face centered cubic (fcc) AISI (American Iron and Steel Institute)-316L stainless steel and CoCrFeMnNi-high entropy alloy (HEA) were successfully fabricated using selective laser melting (SLM). Both the SLM processed alloys reveal the presence of hierarchical microstructure (presence of columnar grains, and cellular substructures). Also, the microhardness and tensile properties of AISI 316L stainless steel and CoCrFeMnNi-HEA are similar, where the microhardness varies between 240 and 270 HV0.5 and the yield strength and ultimate tensile strength are observed to be around ~ 500 MPa and ~ 600 MPa respectively. The aim of this research is to study the influence of rapid work hardening vs steady state working hardening in two materials of same crystal structure. Accordingly, CoCrFeMnNi-HEA exhibits higher work hardening rate at lower strains (< 5% true strain); however, it lacks its work hardening stability at higher strain. While in case of AISI 316L stainless steel, even though, it shows lower work hardening at initial strain, it withstands at higher strain (high ductility) due to stable work hardening ability by twin mediated plasticity during plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  2. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  Google Scholar 

  3. Prashanth K, Löber L, Klauss H-J et al (2016) Characterization of 316L steel cellular dodecahedron structures produced by selective laser melting. Technologies 4:34. https://doi.org/10.3390/technologies4040034

    Article  Google Scholar 

  4. Ma P, Jia Y, Gokuldoss P, konda, et al (2017) Effect of Al2O3 nanoparticles as reinforcement on the tensile behavior of Al-12Si composites. Metals (Basel) 7:1–11. https://doi.org/10.3390/met7090359

    Article  Google Scholar 

  5. Prashanth KG, Scudino S, Klauss HJ et al (2014) Microstructure and mechanical properties of Al-12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng A 590:153–160. https://doi.org/10.1016/j.msea.2013.10.023

    Article  Google Scholar 

  6. Ma P, Prashanth K, Scudino S et al (2014) Influence of annealing on mechanical properties of Al-20Si processed by selective laser melting. Metals (Basel) 4:28–36. https://doi.org/10.3390/met4010028

    Article  Google Scholar 

  7. Wang Z, Ummethala R, Singh N et al (2020) Selective laser melting of aluminum and its alloys. Materials (Basel) 13:1–67. https://doi.org/10.3390/ma13204564

    Article  Google Scholar 

  8. Prashanth KG, Scudino S, Chaubey AK et al (2016) Processing of Al-12Si-TNM composites by selective laser melting and evaluation of compressive and wear properties. J Mater Res 31:55–65. https://doi.org/10.1557/jmr.2015.326

    Article  Google Scholar 

  9. Salman OO, Brenne F, Niendorf T et al (2019) Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. J Manuf Process 45:255–261. https://doi.org/10.1016/j.jmapro.2019.07.010

    Article  Google Scholar 

  10. Haghdadi N, Laleh M, Moyle M, Primig S (2020) Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci 561(56):64–107. https://doi.org/10.1007/S10853-020-05109-0

    Article  Google Scholar 

  11. Gorsse S, Hutchinson C, Gouné M, Banerjee R (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Technol Adv Mater 18:584–610. https://doi.org/10.1080/14686996.2017.1361305

    Article  Google Scholar 

  12. Marchese G, Garmendia Colera X, Calignano F et al (2017) Characterization and comparison of inconel 625 processed by selective laser melting and laser metal deposition. Adv Eng Mater 19:1600635. https://doi.org/10.1002/adem.201600635

    Article  Google Scholar 

  13. Witkin DB, Patel DN, Helvajian H et al (2019) Surface treatment of powder-bed fusion additive manufactured metals for improved fatigue life. J Mater Eng Perform 28:681–692. https://doi.org/10.1007/s11665-018-3732-9

    Article  Google Scholar 

  14. Konečná R, Nicoletto G, Kunz L, Bača A (2016) Microstructure and directional fatigue behavior of Inconel 718 produced by selective laser melting. Procedia Struct Integr 2:2381–2388. https://doi.org/10.1016/j.prostr.2016.06.298

    Article  Google Scholar 

  15. Gokuldoss PK, Kolla S, Eckert J (2017) Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials (Basel) 10:1–11. https://doi.org/10.3390/ma10060672

    Article  Google Scholar 

  16. Ummethala R, Jayaraj J, Karamched PS et al (2021) In vitro corrosion behavior of selective laser melted Ti-35Nb-7Zr-5Ta. J Mater Eng Perform. https://doi.org/10.1007/s11665-021-05940-9

    Article  Google Scholar 

  17. Ummethala R, Karamched PS, Rathinavelu S et al (2020) Selective laser melting of high-strength, low-modulus Ti–35Nb–7Zr–5Ta alloy. Materialia 14:100941. https://doi.org/10.1016/j.mtla.2020.100941

    Article  Google Scholar 

  18. Attar H, Löber L, Funk A et al (2015) Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Mater Sci Eng A 625:350–356. https://doi.org/10.1016/j.msea.2014.12.036

    Article  Google Scholar 

  19. Brif Y, Thomas M, Todd I (2015) The use of high-entropy alloys in additive manufacturing. Scr Mater 99:93–96. https://doi.org/10.1016/j.scriptamat.2014.11.037

    Article  Google Scholar 

  20. Zhu ZG, Nguyen QB, Ng FL et al (2018) Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr Mater 154:20–24. https://doi.org/10.1016/j.scriptamat.2018.05.015

    Article  Google Scholar 

  21. Shukla S, Choudhuri D, Wang T et al (2018) Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy. Mater Res Lett 6:676–682. https://doi.org/10.1080/21663831.2018.1538023

    Article  Google Scholar 

  22. Yao H, Tan Z, He D et al (2020) High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting. J Alloys Compd 813:152196. https://doi.org/10.1016/j.jallcom.2019.152196

    Article  Google Scholar 

  23. Jung HY, Choi SJ, Prashanth KG et al (2015) Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study. Mater Des 86:703–708. https://doi.org/10.1016/j.matdes.2015.07.145

    Article  Google Scholar 

  24. Pauly S, Löber L, Petters R et al (2013) Processing metallic glasses by selective laser melting. Mater Today 16:37–41. https://doi.org/10.1016/j.mattod.2013.01.018

    Article  Google Scholar 

  25. Li N, Zhang J, Xing W et al (2018) 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Mater Des 143:285–296. https://doi.org/10.1016/j.matdes.2018.01.061

    Article  Google Scholar 

  26. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  27. Yeh J-W, Chen S-K, Lin S-J et al (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303. https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  28. Zhang ZJ, Mao MM, Wang J et al (2015) Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun 6:1–6. https://doi.org/10.1038/ncomms10143

    Article  Google Scholar 

  29. Li D, Zhang Y (2016) The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70:24–28. https://doi.org/10.1016/j.intermet.2015.11.002

    Article  Google Scholar 

  30. Xia SQ, Yang X, Yang TF et al (2015) Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM 67:2340–2344. https://doi.org/10.1007/s11837-015-1568-4

    Article  Google Scholar 

  31. Xu Q, Guan HQ, Zhong ZH et al (2021) Irradiation resistance mechanism of the CoCrFeMnNi equiatomic high-entropy alloy. Sci Rep 11:1–8. https://doi.org/10.1038/s41598-020-79775-0

    Article  Google Scholar 

  32. Wang WR, Wang WL, Yeh JW (2014) Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd 589:143–152. https://doi.org/10.1016/j.jallcom.2013.11.084

    Article  Google Scholar 

  33. Sokkalingam R, Sivaprasad K, Duraiselvam M et al (2020) Novel welding of Al0.5CoCrFeNi high-entropy alloy: corrosion behavior. J Alloys Compd 817:153163. https://doi.org/10.1016/j.jallcom.2019.153163

    Article  Google Scholar 

  34. Won JW, Lee S, Park SH et al (2018) Ultrafine-grained CoCrFeMnNi high-entropy alloy produced by cryogenic multi-pass caliber rolling. J Alloys Compd 742:290–295. https://doi.org/10.1016/j.jallcom.2018.01.313

    Article  Google Scholar 

  35. Kumar N, Komarasamy M, Nelaturu P et al (2015) Friction stir processing of a high entropy alloy Al0.1CoCrFeNi. JOM 67:1007–1013. https://doi.org/10.1007/s11837-015-1385-9

    Article  Google Scholar 

  36. Guo L, Gu J, Gan B et al (2021) Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N, Si) high entropy alloy. J Alloys Compd 865:158892. https://doi.org/10.1016/j.jallcom.2021.158892

    Article  Google Scholar 

  37. Wang L, Zhang Q, Zhu J et al (2019) Nature of extra capacity in MoS2 electrodes: molybdenum atoms accommodate with lithium. Energy Storage Mater 16:37–45. https://doi.org/10.1016/j.ensm.2018.04.025

    Article  Google Scholar 

  38. Lin YC, Lu N, Perea-Lopez N et al (2014) Direct synthesis of van der Waals solids. ACS Nano 8:3715–3723. https://doi.org/10.1021/nn5003858

    Article  Google Scholar 

  39. Wang Z, Xie M, Li Y et al (2020) Premature failure of an additively manufactured material. NPG Asia Mater 12:1–10. https://doi.org/10.1038/s41427-020-0212-0

    Article  Google Scholar 

  40. Zhao C, Wang Z, Li D et al (2021) Selective laser melting of Cu–Ni–Sn: a comprehensive study on the microstructure, mechanical properties, and deformation behavior. Int J Plast 138:102926. https://doi.org/10.1016/j.ijplas.2021.102926

    Article  Google Scholar 

  41. Li R, Niu P, Yuan T et al (2018) Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property. J Alloys Compd 746:125–134. https://doi.org/10.1016/j.jallcom.2018.02.298

    Article  Google Scholar 

  42. Piglione A, Dovgyy B, Liu C et al (2018) Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion. Mater Lett 224:22–25. https://doi.org/10.1016/j.matlet.2018.04.052

    Article  Google Scholar 

  43. Kim YK, Choe J, Lee KA (2019) Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: microstructure, anisotropic mechanical response, and multiple strengthening mechanism. J Alloys Compd 805:680–691. https://doi.org/10.1016/j.jallcom.2019.07.106

    Article  Google Scholar 

  44. Kim YK, Yang S, Lee KA (2020) Superior temperature-dependent mechanical properties and deformation behavior of equiatomic CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-65073-2

    Article  Google Scholar 

  45. Sokkalingam R, Muthupandi V, Sivaprasad K, Prashanth KG (2019) Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel. J Mater Res 34:2683–2694. https://doi.org/10.1557/jmr.2019.186

    Article  Google Scholar 

  46. Ye Q, Feng K, Li Z et al (2017) Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl Surf Sci 396:1420–1426. https://doi.org/10.1016/J.APSUSC.2016.11.176

    Article  Google Scholar 

  47. Zhang S, Ma P, Jia Y et al (2019) Microstructure and mechanical properties of Al-(12–20)Si Bi-material fabricated by selective laser melting. Materials (Basel) 12:2126. https://doi.org/10.3390/ma12132126

    Article  Google Scholar 

  48. Sokkalingam R, Mastanaiah P, Muthupandi V et al (2020) Electron-beam welding of high-entropy alloy and stainless steel: microstructure and mechanical properties. Mater Manuf Process 35:1885–1894. https://doi.org/10.1080/10426914.2020.1802045

    Article  Google Scholar 

  49. Zhao C, Wang Z, Li D et al (2020) Cu-Ni-Sn alloy fabricated by melt spinning and selective laser melting: a comparative study on the microstructure and formation kinetics. J Mater Res Technol 9:13097–13105. https://doi.org/10.1016/j.jmrt.2020.09.047

    Article  Google Scholar 

  50. Shamsujjoha M, Agnew SR, Fitz-Gerald JM et al (2018) High strength and ductility of additively manufactured 316L stainless steel explained. Metall Mater Trans A Phys Metall Mater Sci 49:3011–3027. https://doi.org/10.1007/s11661-018-4607-2

    Article  Google Scholar 

  51. Suryawanshi J, Prashanth KG, Ramamurty U (2017) Mechanical behavior of selective laser melted 316L stainless steel. Mater Sci Eng A 696:113–121. https://doi.org/10.1016/j.msea.2017.04.058

    Article  Google Scholar 

  52. Zhong Y, Rännar LE, Liu L et al (2017) Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J Nucl Mater 486:234–245. https://doi.org/10.1016/J.JNUCMAT.2016.12.042

    Article  Google Scholar 

  53. Yu S, Zhang P, Qiu K et al (2018) Preparation and characterization of 316L spherical powder for different uses by supersonic laminar flow atomization. Ferroelectrics 530:25–31. https://doi.org/10.1080/00150193.2018.1454071

    Article  Google Scholar 

  54. Liu Y, Yang Y, Mai S et al (2015) Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater Des 87:797–806. https://doi.org/10.1016/j.matdes.2015.08.086

    Article  Google Scholar 

  55. Savage SJ, Froes FH (1984) Production of rapidly solidified metals and alloys. JOM J Miner Met Mater Soc 36:20–33. https://doi.org/10.1007/BF03338423

    Article  Google Scholar 

  56. Yang X, Ge Y, Lehtonen J, Hannula SP (2020) Hierarchical microstructure of laser powder bed fusion produced face-centered-cubic-structured equiatomic crfenimn multicomponent alloy. Materials (Basel) 13:1–11. https://doi.org/10.3390/ma13204498

    Article  Google Scholar 

  57. Kelly TF, Cohen M, Vander Sande JB (1984) Rapid solidification of a droplet-processed stainless steel. Metall Trans A Phys Metall Mater Sci 15A:819–833. https://doi.org/10.1007/BF02644556

    Article  Google Scholar 

  58. Raghavan V (1995) Effect of manganese on the stability of austenite in Fe-Cr-Ni alloys. Metall Mater Trans A 26:237–242. https://doi.org/10.1007/BF02664662

    Article  Google Scholar 

  59. Prashanth KG, Scudino S, Eckert J (2017) Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater 126:25–35. https://doi.org/10.1016/j.actamat.2016.12.044

    Article  Google Scholar 

  60. Sokkalingam R, Muthupandi V, Sivaprasad K, Prashanth KG (2019) Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel. J Mater Res 35:2683–2694. https://doi.org/10.1557/jmr.2019.186

    Article  Google Scholar 

  61. Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48:171–273. https://doi.org/10.1016/S0079-6425(02)00003-8

    Article  Google Scholar 

  62. Konda Gokuldoss P (2019) Work hardening in selective laser melted Al-12Si alloy. Mater Des Process Commun 1:e46. https://doi.org/10.1002/mdp2.46

    Article  Google Scholar 

  63. Sokkalingam R, Mishra S, Cheethirala SR et al (2017) Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy. Metall Mater Trans A 488:3630–3634. https://doi.org/10.1007/S11661-017-4140-8

    Article  Google Scholar 

  64. Thapliyal S, Nene SS, Agrawal P et al (2020) Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing. Addit Manuf 36:101455. https://doi.org/10.1016/j.addma.2020.101455

    Article  Google Scholar 

Download references

Acknowledgements

Authors would also thank SPARC program from the Ministry of Human Resources and Development (MHRD), Government of India for the financial support. Funding from the European Regional Development Grant (ASTRA 6-6) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Prashanth.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose the data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokkalingam, R., Sivaprasad, K., Singh, N. et al. Subtle change in the work hardening behavior of fcc materials processed by selective laser melting. Prog Addit Manuf 7, 453–461 (2022). https://doi.org/10.1007/s40964-022-00301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-022-00301-x

Keywords

Navigation