Skip to main content

Advertisement

Log in

Development and Characterization of in-situ AA2024-Al3NiCu Composites

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This research aims to study the effect of nickel additive and heat treatment effects on microstructure and mechanical properties of in-situ AA2024-Al3NiCu composite fabricated by the stir casting method. The effects of artificial aging heat treatment, after the homogenization of as-cast composites, were investigated in this study. The results indicated that, after artificial aging, the precipitate-free zone at the inter-dendritic zone disappeared or became smaller. With the addition of nickel up to 3 wt% as well as the aging process, S-Al2CuMg precipitates will be reduced and their size will be smaller. However, after adding 4.5 wt% of nickel and, also, performing aging heat treatment, it is not possible to precipitate the S- Al2CuMg precipitates, and, instead of it, the T-Al6CuMg4 precipitates will be formed. By increasing the nickel amount from 3 to 4.5 wt%, the hardness, ultimate tensile strength, and toughness, after aging treatment, decreases 8, 19, and 28 %, respectively. By adding nickel and performing aging treatment at 200 °C for 120 min, the maximum hardness, ultimate tensile strength, and toughness achieved in the 3 wt% nickel-containing sample as 134.10 ± 4.89 HV, 251.23 ± 3.70 MPa, and 1.96 ± 0.09 MJ.m-3, respectively. The hardness, ultimate tensile strength, and toughness of AA2024-Al3NiCu composite, after aging treatment, increased 11, 49, and 139%, respectively, compared to nickel-free AA2024 aluminum alloy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. I. Dinaharan, Liquid metallurgy processing of intermetallic matrix composites, in: Intermetallic Matrix Composites, Elsevier, 2018, pp. 167-202.

  2. P. Ajay Kumar, P. Rohatgi, D. Weiss, 50 years of foundry-produced metal matrix composites and future opportunities. Int. J. Metalcast. 14, 291–317 (2020). https://doi.org/10.1007/s40962-019-00375-4.

    Article  CAS  Google Scholar 

  3. A. Gnanavelbabu, K.T.S. Surendran, S. Kumar, Process optimization and studies on mechanical characteristics of AA2014/Al2O3 nanocomposites fabricated through ultrasonication assisted stir–squeeze casting. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00634-3.

  4. F. Liu, X. Zhu, S. Ji, Effects of Ni on the microstructure, hot tear and mechanical properties of Al–Zn–Mg–Cu alloys under as-cast condition. J. Alloys Compd. 821, 153458 (2020)

    Article  CAS  Google Scholar 

  5. R. Ramamoorthi, J.J.M. Hillary, R. Sundaramoorthy, J.D.J. Joseph, K. Kalidas, K. Manickaraj, Influence of stir casting route process parameters in fabrication of aluminium matrix composites–a review. Mater. Today Proc. 45, 6660–6664 (2021)

    Article  CAS  Google Scholar 

  6. P. Sahoo, S. Ghosh, Tribological behavior of aluminium metal matrix composites–a review. J. Tribol. Res. 2, 1–14 (2011)

    CAS  Google Scholar 

  7. G.F. Aynalem, Processing methods and mechanical properties of aluminium matrix composites, Adv. Mater. Sci. Eng. 2020 (2020).

  8. M.K. Sahu, R.K. Sahu, Fabrication of aluminum matrix composites by stir casting technique and stirring process parameters optimization, in: Advanced Casting Technologies, IntechOpen, 2018.

  9. F. Badia, P. Rohatgi, Dispersion of graphite particles in aluminum castings through injection of the melt (1969).

  10. V.M. Bermudez, Auger and electron energy-loss study of the Al/SiC interface. Appl. Phys. Lett. 42, 70–72 (1983)

    Article  CAS  Google Scholar 

  11. V.S. Ayar, M.P. Sutaria, Comparative evaluation of ex situ and in situ method of fabricating aluminum/TiB2 composites. Int. J. Metalcast. 15, 1047–1056 (2021). https://doi.org/10.1007/s40962-020-00539-7.

    Article  CAS  Google Scholar 

  12. V.S. Ayar, M.P. Sutaria, Development and characterization of in situ AlSi5Cu3/TiB2 composites. Int. J. Metalcast. 14, 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x.

    Article  CAS  Google Scholar 

  13. M. Zare, A. Maleki, B. Niroumand, In situ Al-SiOC composite fabricated by in situ pyrolysis of a silicone polymer gel in aluminum melt. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00658-9.

  14. H. Demirtaş, R. Yildiz, E. Çevik, Mechanical and wear properties of high rate NiAl particle-reinforced Al composites produced by pressure infiltration method. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-020-00564-6.

  15. D. Yadav, R. Bauri, Nickel particle embedded aluminium matrix composite with high ductility. Mater. Lett. 64, 664–667 (2010)

    Article  CAS  Google Scholar 

  16. S. Arul, Effect of nickel reinforcement on micro hardness and wear resistance of aluminium alloy Al7075. Mater. Today: Proc. 24, 1042–1051 (2020)

    Google Scholar 

  17. A. Sytschev, N. Kochetov, S. Vadchenko, D.Y. Kovalev, A. Shchukin, Processing of Ni–Al intermetallic with 2D carbon components. Mater. Chem. Phys. 238, 121898 (2019)

    Article  CAS  Google Scholar 

  18. M.T. Hayajneh, A.M. Hassan, Y.M. Jaradat, The effect of nickel addition, solution treatment temperature and time on the precipitation hardening of (Al-Cu) alloys. Acad. Edu 141, 1–5 (2007)

    Google Scholar 

  19. R. Farajollahi, H. Jamshidi Aval, R. Jamaati, Effects of Ni on the microstructure, mechanical and tribological properties of AA2024-Al3NiCu composite fabricated by stir casting process. J. Alloys Compd. 887, 161433 (2021)

    Article  CAS  Google Scholar 

  20. A.R. Najarian, R. Emadi, M. Hamzeh, Fabrication of as-cast Al matrix composite reinforced by Al2O3/Al3Ni hybrid particles via in-situ reaction and evaluation of its mechanical properties. Mater. Sci. Eng., B 231, 57–65 (2018)

    Article  CAS  Google Scholar 

  21. R. Ramesh, S. Suresh Kumar, S. Gowrishankar, Production and characterization of aluminium metal matrix composite reinforced with Al3Ni by stir and squeeze casting, in: Applied Mechanics and Materials, Trans Tech Publ, 2015, pp. 315–319.

  22. X. Zhang, H. Wang, C. Zou, Z. Wei, The evolution of microstructure and mechanical properties at elevated temperature of cast Al–Li–Cu–Mg alloys with Ni addition. J. Market. Res. 9, 11069–11079 (2020)

    CAS  Google Scholar 

  23. M. Raei, M. Panjepour, M. Meratian, Effect of stirring speed and time on microstructure and mechanical properties of Cast Al–Ti–Zr–B 4 C composite produced by stir casting. Russ. J. Non-Ferrous Metals 57, 347–360 (2016)

    Article  Google Scholar 

  24. A. Handbook, Heat treating, vol. 4, ASM International, Materials Park, OH, 860 (1991).

  25. S. Salarieh, S. Nourouzi, H. Jamshidi Aval, An investigation on the microstructure and mechanical properties of Al-Zn-Mg-Cu/Ti composite produced by compocasting. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00698-1.

  26. R. Taylor, S. McClain, J. Berry, Uncertainty analysis of metal-casting porosity measurements using Archimedes’ principle. Int. J. Cast Met. Res. 11, 247–257 (1999)

    Article  Google Scholar 

  27. A. Mohamed, F. Samuel, Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Mater. Sci. Eng., A 577, 64–72 (2013)

    Article  CAS  Google Scholar 

  28. M. Liang, L. Chen, G. Zhao, Y. Guo, Effects of solution treatment on the microstructure and mechanical properties of naturally aged EN AW 2024 Al alloy sheet. J. Alloys Compd. 824, 153943 (2020)

    Article  CAS  Google Scholar 

  29. S.-B. Yu, M.-S. Kim, Microstructure and high temperature deformation of extruded Al-12Si-3Cu-based alloy. Metals 6, 32 (2016)

    Article  Google Scholar 

  30. J.T. Kim, V. Soprunyuk, N. Chawake, Y.H. Zheng, F. Spieckermann, S.H. Hong, K.B. Kim, J. Eckert, Outstanding strengthening behavior and dynamic mechanical properties of in-situ Al–Al3Ni composites by Cu addition. Composites Part B Engineering 189, 107891 (2020)

    Article  CAS  Google Scholar 

  31. C. Chan, Friction Stir Processing of Aluminium-Silicon Alloys, The University of Manchester (United Kingdom), 2011.

  32. L.F. Mondolfo, Aluminum alloys: structure and properties (Elsevier, Amsterdam, 2013)

    Google Scholar 

  33. G. Quan, L. Ren, M. Zhou, 2.13 Solutionizing and age hardening of aluminum alloys, in Comprehensive Materials Finishing. ed. by M.S.J. Hashmi (Elsevier, Oxford, 2017), pp. 372–397

    Chapter  Google Scholar 

  34. Z. Gxowa-Penxa, P. Daswa, R. Modiba, M. Mathabathe, A. Bolokang, Development and characterization of Al–Al3Ni–Sn metal matrix composite. Mater. Chem. Phys. 259, 124027 (2021)

    Article  CAS  Google Scholar 

  35. P. Hernández, H. Dorantes, F. Hernández, R. Esquivel, D. Rivas, V. López, Synthesis and microstructural characterization of Al–Ni3Al composites fabricated by press-sintering and shock-compaction. Adv. Powder Technol. 25, 255–260 (2014)

    Article  Google Scholar 

  36. J.R. Davis, Aluminum and aluminum alloys (ASM International, Almere, 1993)

    Google Scholar 

  37. Y. Yoshida, H. Esaka, K. Shinozuka, Effect of solidified structure on hot tear in Al-Cu alloy, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2015, pp. 012059.

  38. J.-Q. Han, J.-S. Wang, M.-S. Zhang, K.-M. Niu, Relationship between amounts of low-melting-point eutectics and hot tearing susceptibility of ternary Al− Cu− Mg alloys during solidification. Trans. Nonferrous Metals Soc. China 30, 2311–2325 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Jamshidi Aval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farajollahi, R., Jamshidi Aval, H. & Jamaati, R. Development and Characterization of in-situ AA2024-Al3NiCu Composites. Inter Metalcast 17, 109–123 (2023). https://doi.org/10.1007/s40962-021-00752-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00752-y

Keywords

Navigation