Skip to main content
Log in

A Review on Hot Tearing of Steels

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Hot tearing is a common solidification defect in both continuous cast steels and foundry shaped castings, which has a significant impact on the quality of the final products. It is a complex phenomenon that involves both the thermal and mechanical conditions and chemical element segregation that evolves during casting process. Over several decades, much effort has been invested into improving our understanding of the conditions required for the occurrence of hot tearing and to relate these conditions with casting parameters, like casting speed in continuous cast process, alloy composition, cooling conditions, etc. This review summarizes the results from previous investigations that have focused on the hot tearing phenomenon of steels, including criteria for hot tearing, experimental methods, and several validated models for different testing methods. The factors that influence hot tearing sensitivity are also reviewed and discussed in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. J. Campbell, Casting (Butterworth-Heinemann, Oxford, 1991).

    Google Scholar 

  2. J. Guo, G. Wen, Influence of alloy elements on cracking in the steel ingot during its solidification. Metals 9(8), 836 (2019)

    CAS  Google Scholar 

  3. M. Rappaz, J.M. Drezet, M. Gremaud, A new hot-tearing criterion. Metall. Mater. Trans. A 30, 449–455 (1999)

    Google Scholar 

  4. H.F. Bishop, C.G. Ackerlind, W.S. Pellini, AFS Trans. 60, 818–833 (1952)

    Google Scholar 

  5. W. Pellini Foundry, vol. 80, pp. 124–133 and 192–199 (1952)

  6. D.G. Eskin, L. Katgerman, A quest for a new hot tearing criterion. Metall Mater Trans A 38A, 1511–1519 (2007)

    CAS  Google Scholar 

  7. M.O. El Bealy, On the formation of macrosegregation and interdendritic cracks during dendritic solidification of continuous casting of steel. Metall Mater Trans B 45B, 988–1017 (2014)

    Google Scholar 

  8. Y.M. Won, T.-J. Yeo, D.J. Seol, K.H. Oh, A new criterion for internal crack formation in continuously cast steels. Metall. Mater. Trans. B 31B, 779–794 (2000)

    CAS  Google Scholar 

  9. J.K. Brimacombe, F. Weinberg, E.B. Hawbolt, Formation of longitudinal, midface cracks in continuously-cast slabs. Metall. Trans. B 10, 279–292 (1979)

    Google Scholar 

  10. K. Miyazawa, K. Schwerdtfeger, Macrosegregation in continuously cast steel slabs: preliminary theoretical investigation on the effect of steady state bulging. Steel Res. Int. 52(11), 415–422 (1981)

    CAS  Google Scholar 

  11. A. Grill, K. Schwerdtfeger, Finite-element analysis of bulging produced by creep in continuously cast steel slabs. Ironmak. Steelmak. 6, 131–135 (1979)

    Google Scholar 

  12. G. Van Drunen, J.K. Brimacombe, F. Weinberg, Internal cracks in strand-cast billets. Ironmak. Steelmak. 2, 125–133 (1975)

    Google Scholar 

  13. J.K. Brimacombe, K. Sorimachi, Crack formation in the continuous casting of steel. Metall. Trans. B 8, 489–505 (1977)

    Google Scholar 

  14. E.B. Hawbolt, F. Weinberg, J.K. Brimacombe, Influence of hot working on internal cracks in continuously-cast steel billets. Metall. Trans. B 10, 229–236 (1979)

    Google Scholar 

  15. H. K. (2001) On the hot crack formationh during solidification of iron-base alloys, Stockholm, Sweden: PhD thesis, Royal Institute of Technology

  16. D.G. Eskin, L.K. Suyitno, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog. Mater. Sci. 49, 629–711 (2004)

    CAS  Google Scholar 

  17. K. Kim, H.N. Han, T. Yeo, Y. Lee, K.H. Oh, D.N. Lee, Analysis of surface and internal cracks in continuously cast beam blank. Ironmak. Sleelmak. 24(3), 249–256 (1997)

    CAS  Google Scholar 

  18. W. Wang, L. Ning, R. Bulte, W. Bleck, Formation of internal cracks in steel billets during soft reduction. J. Univ. Sci. Technol. Beijing 15(2), 114–119 (2008)

    CAS  Google Scholar 

  19. T.W. Clyne, M. Wolf, W. Kurz, The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting. Metall. Trans. B 13B, 259–266 (1982)

    CAS  Google Scholar 

  20. Y.M. Won, K. Kim, T. Yeo, K.H. Oh, Effect of cooling rate on ZST. LIT and ZDT of carbon steels near melting point. ISIJ Int. 38(10), 1093–1099 (1998)

    CAS  Google Scholar 

  21. J.-M. Drezet, M. Gremaud, R. Graf, M. Gäumann, “A New Hot Tearing Criterion for Steel,” in 4th ECCC (Birmingham, UK, 2002).

    Google Scholar 

  22. M. B. Santillana (2013) Thermo-mechanical properties and cracking during solidification of thin slab cast steel," PhD thesis, Tata Steel Nederland Technology B. V

  23. S. Li, D. Apelian, Hot tearing of aluminum alloys. Inter. Metalcast. 5, 23–40 (2011). https://doi.org/10.1007/BF03355505

    Article  Google Scholar 

  24. S. Li, D. Apelian, K. Sadayappan, Hot tearing in cast Al alloys: mechanisms and process controls. Inter. Metalcast. 6, 51–58 (2012). https://doi.org/10.1007/BF03355533

    Article  Google Scholar 

  25. J. Song, F. Pan, B. Jiang, A. Atrens, M. Zhang, Y. Lu, A review on hot tearing of magnesium alloys. J. Magnes. Alloys 4, 151–172 (2016)

    CAS  Google Scholar 

  26. S. K. Trikha, C. E. Bates, Improved method for hot tear testing and methods to reduce hot tears. AFS Trans. 110, 173–180 (2002)

    Google Scholar 

  27. D.S. Bhiogade, S.M. Randiwe, A.M. Kuthe, Failure analysis and hot tearing susceptibility of stainless steel CF3M. Int. J. Metalcast. 13(1), 166–179 (2019). https://doi.org/10.1007/s40962-018-0246-z

    Article  Google Scholar 

  28. D.S. Bhiogade, S.M. Randiwe, A.M. Kuthe et al., Study of hot tearing in stainless steel CF3M during casting using simulation and experimental method. Int. J. Metalcast. 12, 331–342 (2018). https://doi.org/10.1007/s40962-017-0170-7

    Article  Google Scholar 

  29. H. Zhong, X. Li, B. Wang, T. Wu, Y. Zhang, B. Liu, Q. Zhai, Hot tearing of 9Cr3Co3W heat-resistant steel during solidification. Metals 9(1), 25 (2019)

    CAS  Google Scholar 

  30. C.H. Dickhaus, L. Ohm, S. Engler, Mechanical properties of solidifying shells of aluminum alloys. AFS Trans. 101, 677–684 (1993)

    CAS  Google Scholar 

  31. J. Langlais, J.E. Gruzleski, A novel approach to assessing the hot tearing susceptibility of aluminium alloys. Mater. Sci. Forum 331–337, 167–172 (2000)

    Google Scholar 

  32. D.J. LahaieM, Bouchard, , Physical modeling of the deformation mechanisms of semisolid bodies and a mechanical criterion for hot tearing. Metall. Mater. Trans. B 32(4), 697–705 (2001)

    Google Scholar 

  33. A. Yamanaka, K. Nakajima, K. Okamura, Critical strain for internal crack formation in continuous casting. Ironmak. Steelmak. 22(6), 508–512 (1995)

    CAS  Google Scholar 

  34. B. Magnin, L. Maenner, L. Katgerman, S. Engler, Ductility and Rheology of an Al-4.5% Cu Alloy from Room Temperature to Coherency Temperature. Mater. Sci. Forum 217–222, 1209–1214 (1996)

    Google Scholar 

  35. M. Rappaz, J.-M. Drezet, M. Gremaud, A new hot-tearing criterion. Metall. Mater. Trans. A 30A, 449–455 (1999)

    CAS  Google Scholar 

  36. T. Senda, F. Matsuda, G. Takano, K. Watanabe, T. Kobayashi, T. Matsuzaka, Fundamental investigations on solidification crack susceptibility for weld metals with trans-varestraint test. Trans. Jap. Weld. Soc. 2, 45–66 (1971)

    Google Scholar 

  37. Suyitno, W.H. Kool, L. Katgrman, Hot tearing criteria evaluation for direct-chill casting of an Al-45 Pct Cu alloy. Metall. Mater. Trans. A 36A, 1537–1546 (2005)

    CAS  Google Scholar 

  38. L. Katgerman, A mathematical model for hot cracking of aluminum alloys during DC casting. JOM 34(2), 46–49 (1982)

    Google Scholar 

  39. Suyitno, W.H. Kool, L. Katgerman, Integrated approach for prediction of hot tearing. Metall. Mater. Trans. A 40A, 2388–2400 (2009)

    CAS  Google Scholar 

  40. M.R. Nasresfahani, B. Niroumand, A new criterion for prediction of hot tearing susceptibility of cast alloys. Metall. Mater. Trans. A 45A, 3699–3702 (2014)

    Google Scholar 

  41. M. Wolf, W. Kurz, The effect of carbon content on solidification of steel in the continuous casting mold. Metall. Trans. B 12B, 85–93 (1981)

    CAS  Google Scholar 

  42. C. Bernhard, H. Hiebler, M.M. Wolf, Simulation of shell strength properties by the SSCT test. ISIJ Int. 36, S163–S466 (1996)

    Google Scholar 

  43. C. Bernhard, R. Pierer, A. Tubikanec, C.M. Chimani, “Experimental characterization of crack sensitivity under continuous casting conditions,” in Proceedings of Continuous-Casting Innovation Session, Linz, Austria, June (2004)

  44. M. Suzuki, M. Suzuki, C. Yu, T. Emi, In-situ measurement of fracture strength of solidifying steel shells to predict upper limit of casting speed in continuous caster with oscillating mold. ISIJ Int. 37(4), 375–382 (1997)

    CAS  Google Scholar 

  45. A. Yamanaka, K. Nakajima, K. Yasumoto, H. Kawashima, K. Nakai, New evaluation of critical strain for internal crack formation in continuous casting. Rev. Metall. Cah. Inf. Tech 89(7–8), 627–633 (1992)

    CAS  Google Scholar 

  46. M. Suzuki, H. Hayashi, H. Shibata, T. Emi, I.-J. Lee, Simulation of transverse crack formation on continuously cast peritectic medium carbon steel slabs. Steel Res. 70(10), 412–419 (1999)

    CAS  Google Scholar 

  47. R. Flesch, W. Bleck, Crack susceptibility of medium and high alloyed tool steels under continuous casting conditions. Steel Res. 69(7), 292–299 (1998)

    CAS  Google Scholar 

  48. K. Marukawa, M. Kawasaki, T. Kimura, S. Ishikawa, Investigate of the criterion of the internal cracks. Tetsu Hagane 64, S661 (1978)

    Google Scholar 

  49. Y.M. Won, B.G. Thomas, Simple model of microsegregation during solidification of steels. Metall. Mater. Trans. A 32A, 1755–1767 (2001)

    CAS  Google Scholar 

  50. B. Bottger, M. Apel, B. Santillana, D.G. Eski, Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: a phase-field study. Metall. Mater. Trans. A 44A, 3765–3777 (2013)

    Google Scholar 

  51. R. Pierer, C. Bernhard, C. Chimani (2006) A contribution to hot tearing in the continuous casting process. In: Proceedings of the 2006 ATS International Steelmaking Conference. Paris

  52. M.R. Ridolfi, S. Fraschetti, A.D. Vito, L.A. Ferro, Mathematical modeling of hot tearing in the solidification of continuously cast round billets. Metal. Mater. Trans. B 41B, 1293–1309 (2010)

    Google Scholar 

  53. M. Bellet, G. Qiu, J. Carpreau, Comparison of two hot tearing criteria in numerical modelling of arc welding of stainless steel AISI 321. J. Mater. Process. Technol. 230, 143–152 (2016)

    CAS  Google Scholar 

  54. Y.M. Won, H.N. Han, T. Yeo, K.H. Oh, Analysis of solidification cracking using the specific crack susceptibility. ISIJ Int. 40(2), 129–136 (2000)

    CAS  Google Scholar 

  55. Z. Han, K. Cai, B. Liu, Prediction and analysis on formation of internal cracks in continuously cast slabs by mathematical models. ISIJ Int. 41(12), 1473–1480 (2001)

    CAS  Google Scholar 

  56. I.I. Novikov, O.E. Grushko, Hot cracking susceptibility of Al–Cu–Li and Al–Cu–Li–Mn alloys. Mater. Sci. Technol. 11(9), 926–932 (1995)

    CAS  Google Scholar 

  57. J. M Drezet, M. Rappaz (1998) Study of hot tearing in aluminum alloys using the ring mold test," in Modeling of Casting, Welding, and Advanced Solidification Process-XIII, San Antonio

  58. Y. Wang, Q. Wang, G. Wu, Y. Zhu, W. Ding, Hot-tearing susceptibility of Mg-9Al-xZn alloy. Mater. Lett. 57, 929–934 (2002)

    CAS  Google Scholar 

  59. G. Gao, S. Kou, Hot cracking of binary Mg-Al alloy casting. Mater. Sci. Eng. A 417, 230–238 (2006)

    Google Scholar 

  60. S. Li, B. Tang, X. Jin, D. Zeng, An investigation on hot-cracking mechanism of Sr addition into Mg-6Al-0.5Mn alloy. J. Mater. Sci. 47, 2000–2004 (2012)

    CAS  Google Scholar 

  61. Q.Y. Sun, D. Liu, L.P. Wang et al., Influences of rod diameter and sand-mould strength on hot tearing in Mg WE43A constrained rod castings. Int. J. Metalcast. 13, 407–416 (2019). https://doi.org/10.1007/s40962-018-0265-9

    Article  CAS  Google Scholar 

  62. F.A. Fasoyinu, J.P. Thomson, L. Sullivan, M. Sahoo, Characterization of Microstructures and Mechanical Properties of Aluminum Alloys 206.0 and 535.0 Poured in Metal Molds (AFS Trans, Schaumburg, 2008).

    Google Scholar 

  63. C. Monroe, C. Beckermann (2006) Simulation of hot tearing and distortion during casting of steel: comparsion with experiments. In: 61th SFSA Technical and Operating Conference, Chicago

  64. C. A. Monroe, C. Beckermann, J. Klinkhammer (2009) Simulation of deformation and hot tear formation using a visco-plastic model with damage. In: in Modeling of Casting, Welding, and Advanced Solidification Process - XII

  65. D. Galles and C. Beckermann (2012) Measurement and simulation of distortion of a steel bracket casting. In: Proceedings of the 66th SFSA Technical and Operating Conference, Chicago

  66. F.A. Fasoyinu, J.P. Thomson, M. Sahoo, Permanent Mold Casting of Aluminum Alloys A206.0 and A535.0. AFS Trans. 115, 207–220 (2007)

  67. C. Olivier, C. Yvan, B. Michel, Hot tearing in steels during solidification: experimental characterization and thermomechanical modeling. J. Eng. Mat. Techn. 130, 1–7 (2008)

    Google Scholar 

  68. S. Hadzic, E.S. Kelity, C. Sommitsch, Prediction and validation of hot tearing in permanent mold steel casting using a viscoplastic damage model. Comput. Methods Mater. Sci. 13(1), 36–42 (2013)

    Google Scholar 

  69. D.J. Seol, Y.M. Won, K.H. Oh, Y.C. Shin, C.H. Yim, Mechanical behavior of carbon steels in the temperature range of Mushy zone. ISIJ Int. 40(4), 356–363 (2000)

    CAS  Google Scholar 

  70. W. Hu, Y. Zhang, G. Yuan, X. Zhang, and G. Wang, Hot temperature mechanical behavior of high-permeability 6.5 wt% Si electrical steel in a Mushy zone. Steel Res. Int. (2019). https://doi.org/10.1002/srin.201900105

    Article  Google Scholar 

  71. W.T. Lankford, some considerations of strength and ductility in the continuous-casting process. Metallurgical Transactions 3, 1331–1357 (1972)

    CAS  Google Scholar 

  72. H. Sato, T. Kitagawa, K. Murakami, K. Kawawa, Effect of the local shrinkage to the internal cracks in strand. Tetsu to Hagane 61, S471 (1975)

    Google Scholar 

  73. K. Miyamura, K. Kanamaru, N. Kaneko, A. Ochi, Effects of the internal cracks. Tetsu Hagane 62, S482 (1976)

    Google Scholar 

  74. K. Narita, T. Mori, K. Ayata, J. Miyazaki, M. Fujimaki, Determination of the temperature distribution in continuous casting process. Tetsu-to-Hagané 64, S152 (1978)

    Google Scholar 

  75. T. Matsumiya, M. Ito, H. Kajioka, S. Yamaguchi, Y. Nakamura, An evaluation of critical strain for internal crack formation in continuously cast slabs. ISIJ Int. 26, 540–546 (1986)

    Google Scholar 

  76. M. Bellet, O. Cerri, M. Bobadilla, Y. Chastel, Modeling hot tearing during solidification of steels: assessment and improvement of macroscopic criteria through the analysis of two experimental tests. Metall. Mater. Trans. A 40A, 2705–2717 (2009)

    CAS  Google Scholar 

  77. C. Olivier, C. Yvan, B. Michel, Hot tearing in steels during solidification: experimental characterization and thermomechanical modeling. J. Eng. Mater. Technol. 130(2), 021018 (2008)

    Google Scholar 

  78. T. Koshikawa, M. Bellet, C.-A. Gandin, H. Yamamura, M. Bobadilla, Experimental study and two-phase numerical modeling of macrosegregation induced by solid deformation during punch pressing of solidifying steel ingots. Acta Mater. 124, 513–527 (2017)

    CAS  Google Scholar 

  79. T. Koshikawa, M. Bellet, C.-A. Gandin, H. Yamamura, M. Bobadilla (2013) Study of hot tearing through ingot bending test: thermomechanical and solute transport analysis. In: Czech metallurgical Society, Ostrava

  80. T. Koshikawa, M. Bellet, C.-A. Gandin, H. Yamamura, M. Bobadilla (2015) Study of hot tearing and macrosegregation through ingot bending test and its numerical simulation. IOP Conf. Ser.: Mater. Sci. Eng. https://doi.org/10.1088/1757-899X/84/1/012096

    Article  Google Scholar 

  81. T. Koshikawa, M. Bellet, C.-A. Gandin, H. Yamamura, M. Bobadilla, Study of hot tearing during steel solidification through ingot punching test and its numerical simulation. Metall. Mater. Trans. A 47, 4053–4067 (2016)

    CAS  Google Scholar 

  82. P. Ackermann, W. Kurz, W. Heinemann, In situ tensile testing of solidifying aluminium and Al-Mg shells. Mater. Sci. Eng. 75(1–2), 79–86 (1985)

    CAS  Google Scholar 

  83. H. Hiebler, C. Bernhard, Mechanical properties and crack susceptibility of steel during solidification. Steel research 70(8–9), 349–355 (1999)

    CAS  Google Scholar 

  84. X. Ruan, P. Robert, C. Shi, F. Mei, Experimental research on hot-tearing crack sensitivity. Baosteel Tech. Res. 6(3), 18–23 (2012)

    CAS  Google Scholar 

  85. J. Reiter, R. Pierer (2005) Thermo-mechanical simulation of a laboratory test to determine mechanical properties of steel near the solidus temperature," in COMSOL, Burlington

  86. M. Rowan, B.G. Thomas, R. Pierer, C. Bernhard, Measuring mechanical behavior of steel during solidification: modeling the SSCC test. Metall. Mater. Trans. B 42B, 837–851 (2011)

    Google Scholar 

  87. Y. Lu, L. Bartlett, R. O'Malley, S. Lekakh, M. Buchely (2020) New experimental apparatus to investigate hot tearing behavior in steel. In: Proceedings of AISTech

  88. G. Sigworth (2002) Hot tearing of metals," in AFS Library Copy

  89. K. Kim, T. Yeo, K.H. Oh, D.N. Lee, Effect of carbon and sulfur in continuously cast strand on longitudinal surface cracks. ISIJ Int. 36(3), 284–289 (1996)

    CAS  Google Scholar 

  90. K. Wunnenberg, R. Flender, Investigation of internal-crack formation in continuous casting, using a hot model. Ironmak. Steelmak. 12(1), 22–29 (1985)

    Google Scholar 

  91. S.N. Singh, K.E. Blazek, Heat transfer and skin formation in a continuous-casting mold as a function of steel carbon content. JOM 26(10), 17–27 (1974)

    Google Scholar 

  92. D.R. Poirier, G.H. Geiger, Transport Phenomena in Materials Processing (Springer International Publishers, Switzerland, 2006).

    Google Scholar 

  93. T. Nakagawa, T. Umeda, J. Murata, Y. Kamimur, N. Niwa, Detormation behavior during solidification of steels. ISIJ Int. 35(6), 723–729 (1995)

    CAS  Google Scholar 

  94. A. Chojecki, I. TeleJko, T. Bogacz, Influence of chemical composition on the hot tearing formation of cast steel. Theoret. Appl. Fract. Mech. 27, 99–105 (1997)

    CAS  Google Scholar 

  95. W. Wang, S. Luo, Z. Cai, M. Zhu (2013) The effect of phosphorus and sulfur on the crack susceptibility of continuous casting steel. TMS, pp. 89–98

  96. G.A. de Toledo, O. Campo, E. Lainez, Influence of Sulfur and Mn/S ratio on the hot ductility of steels during continuous casting. Steel Res. 64(4), 292–299 (1993)

    Google Scholar 

  97. L.K. Bigelow, M.C. Flemings, Sulfide inclusions in steel. Metall. Trans. B 6B, 275–283 (1975)

    CAS  Google Scholar 

  98. N. Bandyopadhyay, C.L. Briant, The effect of phosphorus on intergranular caustic cracking of NiCr steel. Nat Ass Corros. Eng. 38(3), 125–129 (1982)

    CAS  Google Scholar 

  99. E.D. Hondros, M.P. Seah, Segregation to interfaces. Int. Metals Rev. 22(1), 262–301 (1977)

    CAS  Google Scholar 

  100. F. Weinberg, The ductility of continuously-cast steel near the melting point-hot tearing. Metall. Trans. B 10B, 219–227 (1979)

    CAS  Google Scholar 

  101. J.C. Hamaker, W.P. Wood, Influence of phosphorus on hot tear resistance of plain and alloy gray iron. AFS Trans. 60, 501–510 (1952)

    Google Scholar 

  102. Y. Li, Q.L. Bai, J.C. Liu, H.X. Li, Q. Du, J.S. Zhang, L.Z. Zhuang, The influences of grain size and morphology on the hot tearing susceptibility, contraction, and load behaviors of aa7050 alloy inoculated with Al-5ti-1B master alloy. Metall. Mater. Trans. A 74A, 4024–4037 (2016)

    Google Scholar 

  103. H. Fujii, T. Ohashi, T. Hiromoto, On the formation of internal cracks in continuously cast slabs. Trans. ISIJ 18, 510–518 (1978)

    CAS  Google Scholar 

  104. K. Shinozaki, P. Wen, M. Yamamoto, K. Kadoi, Y. Kohno, T. Komori, Effect of grain size on solidification cracking susceptibility of type 347 stainless steel during laser welding. Trans. JWRI 39(2), 136–138 (2010)

    CAS  Google Scholar 

  105. Y. Yoshida, H. Esaka, K. Shinozuka, Effect of solidified structure on hot tear in Al-Cu alloy. IOP Conf. Ser. Mater. Sci. Eng. 84, 012059 (2015)

    Google Scholar 

  106. F. Matsuda, H. Nakata, Y. Shimokusu, K. Tsukamoto, K. Arai, Effect of additional element on weld solidification crack susceptibility of Al-Zn-Mg alloy. Trans. JWRI 12(1), 81–87 (1983)

    CAS  Google Scholar 

  107. J.E. Kelly, K.R. Michalek, T.G. O’connor, B.G. Thomas, J.A. Dantzig, Initial development of thermal and stress fields in continuously cast steel billets. Metall. Trans. A 19A, 2589–2602 (1988)

    CAS  Google Scholar 

  108. J. Lee, H.N. Han, K.H. Oh, J. Yoon, A fully coupled analysis of fluid flow, heat transfer and stress in continuous round billet casting. ISIJ Int. 39(5), 435–444 (1999)

    CAS  Google Scholar 

  109. C.H. Yu, M. Suzukl, H. Shibata, T. Em, Simulation of crack formation on solidifying steel shell in continuous casting mold. ISIJ Int. 36, S159–S162 (1996)

    Google Scholar 

  110. H.G. Suzuki, S. Nishimura, S. Yamaguchi, Characteristics of hot ductility in steels subjected to the melting and solidification. Trans. ISIJ 22, 48–56 (1982)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Simon N. Lekakh for his technical advice and contribution within this manuscript. The present work is supported by Peaslee Steel Manufacturing Research Center (PSMRC) at Missouri University of Science and Technology (Missouri S&T). All the faculty and industry mentoring committee of the PSMRC are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanru Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Bartlett, L.N. & O’Malley, R.J. A Review on Hot Tearing of Steels. Inter Metalcast 16, 45–61 (2022). https://doi.org/10.1007/s40962-021-00599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00599-3

Keywords

Navigation