Skip to main content
Log in

A Particle-Resolved CFD Study of Combustion and Gasification Processes in a Coke-Fired Furnace

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

To better understand the processes of coke-fired furnaces, a simple coke conversion model was established using computational fluid dynamics (CFD) and applied on an experiment reconstructing geometry of a fixed bed. The aim was to numerically reproduce the results of an experimental work from the literature and, hence, validate the model. Therefore, the packed bed was generated using the discrete element method with real particle geometries obtained by 3-D scanning coke lumps of different sizes. The main precondition for the computation of particle motion was the measured or pre-estimated gas composition as well as the assumption of a steady state for both gas and coke particles moving against the current while reacting with each other. Permanently decreasing in size, the particle distribution was calculated from a constantly moving solid stream. The fixed bed geometry was transferred into the preprocessor and meshed with a boundary layer resolving grid. Subsequently, CFD simulations were performed using parallel computing where the calculation showed good scalability of the problem. Finally, evaluation of the results showed a good approximation with the experimental data, indicating the suitability of the model to applied research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Similar content being viewed by others

Abbreviations

d :

Diameter (m)

e :

Restitution coefficient (−)

F :

Force (n)

g :

9.81, gravity (m/s2)

G :

Shear modulus (MPa)

h :

Height (m)

I :

Moment of inertia (kg m2)

c :

Carbon content (%)

L, l :

Length (m)

m :

Mass (kg)

\( {\dot{m}} \) :

Mass flow rate (kg/s)

M :

Molar weight (kg/mol)

M fr :

Friction moment (Nm)

N, n :

Number (−)

\( {\dot{N}}\) :

Particle flow rate (1/s)

R :

Radius (m)

t :

Time (s)

T :

Temperature (K)

v :

Velocity (m/s)

W :

Specific blast rate per unit area (m3/s/m2)

\(\delta_{\text{BL}}\) :

Thickness of boundary layer (m)

ρ :

Density (kg/m3)

µ :

Friction coefficient (−)

ν :

Poisson ratio (−)

ξ :

Mass fraction (−)

ϕ :

Arbitrary scalar

τ :

Particle contact duration (s)

ω :

Angular velocity (1/s)

0:

Initial state

i, j, k, l :

Counting indices from 0 to n

coke:

Coke

fr:

Friction

Iter.:

Iteration

rel.:

Relative

t:

Tangential

References

  1. V. Stanek, B.Q. Li, J. Szekely, Mathematical model of a cupola furnace—part I: formulation and an algorithm to solve the model. AFS Trans. 100, 425–437 (1992)

    Google Scholar 

  2. W. Rühenbeck, Mathematisches Modell zur Simulation des Kupolofen-Schmelzprozesses bei unterschiedlichen Betriebsbedingungen, Ph.D. thesis, Technical Institute of Karlsruhe (KIT), Karlsruhe (1971)

  3. S. Ratkovic, Beitrag zur Metallurgie und zur mathematischen Modellierung des Kupolofens, Ph.D. thesis, Technical University of Clausthal, Clausthal (2003)

  4. H. Sun, V. Sanajwalla, Numerical analysis of reactions in a cupola melting furnace. ISIJ Int. 44, 23–32 (2004)

    Article  Google Scholar 

  5. W.J. Evans, R.G. Hurley, R.C. Creese, A process model of cupola melting. AFS Trans. 26, 411–419 (1980)

    Google Scholar 

  6. W. Heinbichner, G. Wolf, A. Huster, A particle-resolved CFD model of the combustion and gasification processes of coke. Int J Metalcast. doi:10.1007/s40962-017-0147-6

  7. A. W. Belden, Foundry-Cupola Gases and Temperatures, Bureau of Mines, Bulletin 54, (1913)

  8. E. Piwowarsky, K. Krämer: Grundlegende Untersuchungen an einem Versuchs-Kleinkupolofen, Giesserei – Technisch-Wissenschaftliche Beihefte Nr.1, (1949), pp. 3–10

  9. H. Schiffers: Ein Beitrag zu den Verbrennungsvorgängen im Kupolofen, Giesserei – Technisch-Wissenschaftliche Beihefte Nr. 11, (1953), pp. 527–536

  10. A.B. Draper, H. Choi, I. Petrovski, Chemical and gas composition profiles in an experimental cupola. AFS Trans. 87, 213–220 (1979)

    Google Scholar 

  11. M. Börner, Discrete Element Method, Otto-von-Guericke-University Magdeburg (2011) http://www.ovgu.de/ivt/tvt/media/6a3a9decbbafe2b/dem_skript_englisch.pdf

  12. DEM Solutions Ltd, Edem 2.4 theory reference guide. Edinburgh, UK (2011)

  13. R.D. Mindlin, H. Deresiewicz, Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327–344 (1953)

    Google Scholar 

  14. Ruhrkohle-Verkauf GmbH, Ruhrkohlen Handbuch, seventh ed., Glückauf, (1987), pp. 198–199

  15. A. Adema, Y. Yang, R. Boom, Coupled DEM–CFD Modelling of the ironmaking blast furnace, in Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, (2009), pp. 1–6

  16. Y. Yu, A. Westerlund, T. Paananen, H. Saxen, Inter-particle percolation segregation during burden descent in the blast furnace. ISIJ Int. 51(7), 1050–1056 (2011)

    Article  Google Scholar 

  17. G. Defendi, A. Baltazar, P.F. Nogueira, D.S. Nasato, Blast furnace load simulation using EDEM, in Ansys South American Conference & ESSS Users Meeting, Atibaia, Brasilia, (2010)

  18. P. Semberg, Hearth coke bed buoyancy in the blast furnace—experimental study with a 3-dimensional cold model, Master thesis, Technical University of Lulea, Sweden, (2006)

  19. N.E. Rambush, G.B. Taylor, A new method of investigating the behaviour of charge material in an iron-foundry cupola and some results obtained. Foundry Trade J. 08(45), 197–212 (1945)

    Google Scholar 

  20. R.E. Aristizábal, P.A. Pérez, H.D. Machado, A.M. Pérez, S. Katz, Studies of a quenched cupola part IV: coke behavior. AFS Trans. 121, 475–485 (2013)

    Google Scholar 

  21. R.E. Aristizábal, P.A. Pérez, S. Katz, M.E. Bauer, Studies of a quenched cupola. Int. J. Metalcast. 8, 13–22 (2014)

    Article  Google Scholar 

  22. M. Kuroki, S. Ookawara, D. Street, K. Ogawa, High-fidelity CFD modeling of particle-to-fluid heat transfer in packed bed reactors, in Proceedings of European Congress of Chemical Engineering ECCE-6, Copenhagen, (2007), pp. 1–9

  23. S.D. Dhole, R.P. Chhabra, V. Eswaran, A numerical study on the forced convection heat transfer from an isothermal and isoflux sphere in the steady symmetric flow regime. Int. J. Heat Mass Transf. 49, 984–994 (2006)

    Article  Google Scholar 

  24. W. Heinbichner, CFD-basierte Modellierung von Wärme- und Stofftransportvorgängen in einer turbulent durchströmten Festbettschüttung aus Koks, Ph.D. thesis, Technical University Bergakademie Freiberg, Germany, (2015)

  25. J.B. Howard, G.C. Williams, D.H. Fine, Kinetics of carbon-monoxide oxidation in postflame gases, in Proceedings of the 14th Symposium (International) on Combustion, (The Combustion Institute, Pittsburgh, PA) (1973) pp. 975-986

  26. F. Neumann, Kupolofen, in Handbuch Urformen, ed. by A. Bührig-Polaczek, W. Michaeli, G. Spur (Carl Hanser, München, 2014), pp. 112–119

    Google Scholar 

  27. H. Kadelka, S. Schemberg, The HEF-FLEX process—practical experience from 1 year of operation—technical background, economical and ecological results, in Proceedings of the fourth International Cupola Conference, Dresden, Germany, 2012, pp. 102–116

Download references

Acknowledgements

The project upon which this publication is based was financed by the German Federal Ministry of Economics and Technology under Grant Number 03ET1020A. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Heinbichner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinbichner, W., Wolf, G. & Huster, A. A Particle-Resolved CFD Study of Combustion and Gasification Processes in a Coke-Fired Furnace. Inter Metalcast 12, 126–138 (2018). https://doi.org/10.1007/s40962-017-0150-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-017-0150-y

Keywords

Navigation