Skip to main content
Log in

Effect of Metallurgical Parameters on the Performance of Al-2%Cu-Based Alloys

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present study was performed on a recently developed Al–Cu alloy, designed for automotive applications. This alloy has the composition Al-2%Cu-1.32%Si-0.42%Mg-0.58%Fe-0.59%Mn-0.07%Ti. It was determined that the alloy containing (0.5% Zr + 0.15% Ti) was the most effective in maximizing the alloy tensile strength over the range of aging temperatures studied, from 155 to 300 °C. The addition of Ag is beneficial at high aging temperatures, in the range of 240–300 °C when added simultaneously with 0.27 wt% Zr. However, it is less effective when compared to a high Zr concentration (about 0.62 wt%) at the same levels of Ti. It is concluded that the alloy tensile properties may be determined by contributions from different strengthening mechanisms, namely the grain size, the volume fraction of intermetallics produced, and evolution and growth of the hardening precipitates with respect to the aging conditions. Quality charts constructed from the tensile data may be used to select the appropriate metallurgical conditions for tailoring the alloy properties to those required for a specific application. Increasing the copper content from 2 to 3.5 wt% does not produce a significant increase in the alloy strength. However, it increases the calculated alloy density from approximately 2.78 to 2.93 g/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Y.L. Chu, P.S. Cheng, R. Shivpuri, Soldering Phenomenon in Aluminum Die Casting: Possible Causes and Cures. NADCA Transactions, Paper No. T93–124, 1993, pp. 361–371

  2. M.M. Makhlouf, D. Apelian, L. Wang, Microstructure and Properties of Aluminum Die Casting Alloys. NADCA Transactions, Paper No. DOE/ID/13320-2, 1998, pp. 116–132

  3. A.C. Street, The Die Casting Book, 2nd edn. (Portcullis Press, Red Hill, England, 1990), pp. 611–658

    Google Scholar 

  4. E.M. Elgallad, F.H. Samuel, A.M. Samuel, H.W. Doty, Development of new Al–Cu based alloys aimed at improving the machinability of automotive castings. Int. J. Metalcasting 3, 29–41 (2009)

    Article  Google Scholar 

  5. Y. Yi-Cong, H. Liang-Ju, L. Pei-Jie, Differences of grain-refining effect of Sc and Ti additions in aluminum by empirical electron theory analysis. Trans. Nonferrous Metals Soc. China 20, 465–470 (2010)

    Article  Google Scholar 

  6. E. Samuel, B. Golbahar, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Effect of grain refiner on the tensile and impact properties of Al–Si–Mg cast alloys. Mater. Des. 56, 468–479 (2014)

    Article  Google Scholar 

  7. P.N. Crepeau, Effect of iron in Al–Si casting alloys: a critical review. AFS Trans. 110, 361–366 (1995)

    Google Scholar 

  8. A.M. Nabawy, A.M. Samuel, F.H. Samuel, H.W. Doty, Effects of grain refiner additions (Zr, Ti-B) and of mould variables on hot tearing susceptibility of recently developed Al-2 wt%Cu alloy. Int. J. Cast Met. Res. 26(5), 308–317 (2013)

    Article  Google Scholar 

  9. A.M. Nabawy, A.M. Samuel, F.H. Samuel, H.W. Doty, Influence of additions of Zr, Ti-B, Sr, and Si as well as of mold temperature on the hot-tearing susceptibility of an experimental Al-2%Cu-1%Si alloy. J. Mater. Sci. 47(9), 4146–4158 (2012)

    Article  Google Scholar 

  10. S.G. Irizalp, N. Saklakoglu, Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy. Int. J. Eng. Sci. Technol. 17, 58–62 (2014)

    Article  Google Scholar 

  11. G. Pucella, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, American Foundry Society, Sludge formation in Sr-modified Al-11.5 Wt% Si diecasting alloys, in Proceedings of the One Hundred Third Annual Meeting, March 13–16, 1999 (American Foundrymen’s Society, 1999), pp. 117–125

  12. M. Nabawy, A.M. Samuel, F.H. Samuel, H.W. Doty, Investigation of chemical additives on the microstructure and tensile properties of Al-2wt%Cu based alloys, in Transactions of the American Foundry Society, vol. 119; 115th Metalcasting Congress, April 5–8, 2011, Schaumburg, IL (American Foundry Society, Schaumburg, IL, 2011), pp. 124–139

  13. M.F. Ibrahim, E. Samuel, A.M. Samuel, A.M.A. Al-Ahmari, F.H. Samuel, Metallurgical parameters controlling the microstructure and hardness of Al–Si–Cu–Mg base alloys. Mater. Des. 32(4), 2130–2142 (2011)

    Article  Google Scholar 

  14. Y. Han, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Optimizing the tensile properties of Al–Si–Cu–Mg 319-type alloys: role of solution heat treatment. Mater. Des. 58, 426–438 (2014)

    Article  Google Scholar 

  15. S.G. Shabestari, The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys. Mater. Sci. Eng., A 38, 289–298 (2004)

    Article  Google Scholar 

  16. M. Voncina, A. Smolet, J. Medved, P. Mrvar, R. Barbic, Determination of precipitation sequence in Al-alloys using DSC method. Mater. Geoenviron. 57, 295–304 (2010)

    Google Scholar 

  17. D.G. Eskin, Decomposition of supersaturated solid solution in Al–Cu–Mg–Si alloys. J. Mater. Sci. 38, 279–290 (2003)

    Article  Google Scholar 

  18. L. Reich, M. Murayama, K. Hono, Evolution of Ω phase in an Al–Cu–Mg–Ag alloy-A three-dimensional atom probe study. Acta Mater. 46, 6053–6062 (1998)

    Article  Google Scholar 

  19. J.M. Rosalie, L. Bourgeois, θ′ silver segregation to(Al2Cu)-Al interfaces in Al–Cu–Ag alloys. Philos. Mag. 89, 2195–2211 (2009)

    Article  Google Scholar 

  20. A. Garg, Y.C. Chang, J.M. Howe, Precipitation of the Omega phase in an Al-4.0% Cu-0.5%Mg alloy. Scr. Metall. Mater. 24, 677–680 (1990)

    Article  Google Scholar 

  21. E.M. Elgallad, Effect of Additives on the Mechanical Properties and Machinability of a New Aluminum-Copper Base Alloy, Ph.D. Thesis, UQAC, Quebec, Canada (2010)

  22. H. Liao, Y. Sun, G. Sun, Effect of Al-5Ti-1B on the microstructure of near-eutectic Al-13%Si alloys modified with Sr. J. Mater. Sci. 37, 3489–3495 (2002)

    Article  Google Scholar 

  23. C.L. Chen, A. Richter, R.C. Thomson, Mechanical properties of intermetallic phases in multi-component Al–Si alloys using nano-indentation. Intermetallics 17, 634–641 (2009)

    Article  Google Scholar 

  24. K. Yu, W. Li, S. Li, J. Zhao, Mechanical properties and microstructure of aluminum alloy 2618 with Al3(Sc, Zr) phases. Mater. Sci. Eng., A 368, 88–93 (2004)

    Article  Google Scholar 

  25. S. Qzbilen, H.M. Flower, Zirconium-vacancy binding and its influence on s’-precipitation in an Al–Cu–Mg alloy. Acta Metall. 37, 2993–3000 (1989)

    Article  Google Scholar 

  26. R. Mahmudi, P. Sepehrband, H.M. Ghasemi, Improved properties of A319 aluminum casting alloy modified with Zr. Mater. Lett. 60, 2606–2610 (2006)

    Article  Google Scholar 

  27. M. Drouzy, S. Jacob, M. Richard, Interpretation of tensile results by means of quality index and probable yield strength. AFS Int. Cast Metals J. 5, 43–50 (1980)

    Google Scholar 

  28. C.H. Cáceres, M. Makhlouf, D. Apelian, L. Wang, Quality index chart for different alloys and temperatures: a case study on aluminium die-casting alloys. J. Light Met. 1, 51–59 (2001)

    Article  Google Scholar 

  29. J. Hernandez-Sandoval, G.H. Garza-Elizondo, A.M. Samuel, S. Valtiierra, F.H. Samuel, The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions. Mater. Des. 58, 89–101 (2014)

    Article  Google Scholar 

  30. A.M. Nabawy, Influence of Zr and Sc on the Microstructure, Tensile Properties and Hot-Tearing Susceptibility of Al-2 wt%Cu-Based Alloys, PhD Thesis, Université du Québec à Chicoutimi, Quebec, Canada (2010)

  31. F.J. Tavitas-Medrano, A.M.A. Mohamed, J.E. Gruzleski, F.H. Samuel, H.W. Doty, Precipitation-hardening in cast Al–Si–Cu–Mg alloys. J. Mater. Sci. 45, 641–651 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Amal Samuel for enhancing the image quality of the figures presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, G.A., Samuel, A.M., Doty, H.W. et al. Effect of Metallurgical Parameters on the Performance of Al-2%Cu-Based Alloys. Inter Metalcast 11, 581–597 (2017). https://doi.org/10.1007/s40962-016-0113-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-016-0113-8

Keywords

Navigation