Skip to main content
Log in

Investigations on the thermorheologically complex material behaviour of the laminated safety glass interlayer ethylene-vinyl-acetate

  • SI: Challenging Glass paper
  • Published:
Glass Structures & Engineering Aims and scope Submit manuscript

Abstract

Laminated safety glass has become an indispensable component in building construction, automotive and solar industry. It consists of at least two glass panes, that are laminated together with a polymeric interlayer. Mechanically speaking, the polymeric interlayer enables a shear transfer between the two glass panes. Here, the difficulty lies in the understanding of the real shear transmission. On the one hand, polymeric interlayers show a time dependent material behaviour, which can be described with a ‘Prony-series’ in the linear viscoelastic area. On the other hand, polymeric interlayers show a temperature dependent material behaviour. Hence, a Prony-series is only valid for one specific temperature. However, since relaxation is based on molecular movements and rearrangement processes, which can be thermally activated, an increase in temperature leads to an acceleration of the relaxation process. The time-temperature correlation can be taken into account by means of a ‘Time-Temperature-Superposition-Principle’ (TTSP). The relaxation curve of a thermorheologically simple material shifts solely horizontal along the time axis due to temperature changes, while its shape remains constant. Mathematically, this means, that all relaxation times of the Prony-series are multiplied by the same shift factor \(a_{{T}}\). Recent research of the authors shows, that some polymeric interlayers don’t follow a simple TTSP. The experimental identification through ‘Dynamical-Mechanical-Thermal-Analysis’ as well as ‘Differential Scanning Caliometry’ and numerical incorporation of this thermorheologically complex material behaviour into state-of-the-art Finite-Element-Software will be investigated on the example of ‘Ethylene-vinyl acetate’ in the following paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Barbero, E.J.: Prediction of long-term creep of composites from doubly-shifted polymer creep data. J. Compos. Mater. 43(19), 2109–2124 (2009). https://doi.org/10.1177/0021998308098239

    Article  Google Scholar 

  • Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity: An Introduction. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  • Buddenberg, S., Hof, P., Oechsner, M.: Climate loads in insulating glass units: comparison of theory and experimental results. Glass Struct. Eng. 1(1), 301–313 (2016). https://doi.org/10.1007/s40940-016-0028-z

    Article  Google Scholar 

  • Castagnet, S.: High-temperature mechanical behavior of semi-crystalline polymers and relationship to a rubber-like ”relaxed” state. Mech. Mater. 41(2), 75–86 (2009). https://doi.org/10.1016/j.mechmat.2008.10.001

    Article  Google Scholar 

  • DIN 7724: Polymere Werkstoffe – Gruppierung polymerer Werkstoffe aufgrund ihres mechanischen Verhaltens -Deutsche Fassung. In (1993)

  • DIN 51007: Thermische Analyse (TA); Differenzthermoanalyse (DTA) Grundlagen - Deutsche Fassung. In (1994)

  • DIN EN ISO 6721-1: Kunststoffe – Bestimmung dynamisch-mechanischer Eigenschaften-Teil 1: Allgemeine Grundlagen - Deutsche Fassung. In (2011)

  • DIN EN ISO 11357-1: Kunststoffe – Dynamische Differenz-Thermoanalyse (DSC)-Teil 1: Allgemeine Grundlagen - Deutsche Fassung. In (2017)

  • DIN EN ISO 11357-2: Kunststoffe – Dynamische Differenz-Thermoanalyse (DSC)-Teil 2: Bestimmung der Glasübergangstemperatur und der Glasübergangsstufenhöhe - Deutsche Fassung. In (2014)

  • DIN EN ISO 11357-5: Kunststoffe – Dynamische Differenz-Thermoanalyse (DSC)-Teil 5: Bestimmung von charakteristischen Reaktionstemperaturen und –zeiten, Reaktionsenthalpie und Umsatz. In (2014)

  • Drass, M., Schwind, G., Schneider, J., Kolling, S.: Adhesive connections in glass structures—part I: experiments and analytics on thin structural silicone. Glass Struct. Eng. (2017a). https://doi.org/10.1007/s40940-017-0046-5

  • Drass, M., Schwind, G., Schneider, J., Kolling, S.: Adhesive connections in glass structures—part II: material parameter identification on thin structural silicone. Glass Struct. Eng. (2017b). https://doi.org/10.1007/s40940-017-0048-3

  • Fesko, D.G., Tschoegl, N.W.: Time-temperature superposition in thermorheologically complex materials. J. Polymer Sci. Part C Polym Symp. 35, 51–69 (1971). https://doi.org/10.1002/polc.5070350106

  • Göhler, J.: Das dreidimensionale viskoelastische Stoffverhalten im großen Temperatur- und Zeitbereich am Beispiel eines in der automobilen Aufbau- und Verbindungstechnik verwendeten Epoxidharzklebstoffs. Dissertation, Technische Universität Dresden (2010)

  • Grellmann, W., Seidler, S.: Mechanical and Thermomechanical Properties of Polymers. Springer, Berlin (2014)

    Google Scholar 

  • Habenicht, G.: Kleben: Grundlagen, Technologien, Anwendungen, vol. 6. Springer, Berlin (2009)

    Google Scholar 

  • Kraus, M.A., Niederwald, M.: Generalized collocation method using Stiffness matrices in the context of the theory of linear viscoelasticity (GUSTL). Technische Mechanik 37(1), 82–106 (2017a)

    Google Scholar 

  • Kraus, M., Botz, M., Siebert, G.: Der Ansatz des Schubverbundes bei der Bemessung von Verbundgläsern, Teil 1- Grundlagen und Anwendungsbeispiele. Konstr. Ing. 06(2017), 43–51 (2017b)

  • Kraus, M.A., Schuster, M., Botz, M., Schneider, J., Siebert, G.: Thermorheologische Untersuchungen der Verbundglaszwischenschichten PVB und EVA. Paper presented at the Glasbau, Wiley, Dresden (2017c)

  • Kraus, M.A., Schuster, M., Kuntsche, J., Siebert, G., Schneider, J.: Parameter identification methods for visco- and hyperelastic material models. Glass Struct. Eng. 2(2), 147–167 (2017d). https://doi.org/10.1007/s40940-017-0042-9

  • Kuntsche, J., Schuster, M., Schneider, J.: Bemessung von Verbundsicherheitsglas unter Berücksichtigung des Schubverbunds. Der Bauingenieur 93, 28–36 (2018)

    Google Scholar 

  • Kuntsche, J.K.: Mechanisches Verhalten von Verbundglas unter zeitabhängiger Belastung und Explosionsbeanspruchung. Dissertation, Technische Universität Darmstadt (2015)

  • Kuraray: Manual Verarbeitung von TROSIFOL\({\textregistered }\) PVB-Folie. In (2012)

  • Lion, A., Johlitz, M.: A thermodynamic approach to model the caloric properties of semicrystalline polymers. Contin. Mech. Thermodyn. 28(3), 799–819 (2015). https://doi.org/10.1007/s00161-015-0415-8

    Article  MathSciNet  MATH  Google Scholar 

  • Marcilla, A., Sempere, F.J., Reyes-Labarta, J.A.: Differential scanning calorimetry of mixtures of EVA and PE. Kinet. Model. Polym. 45(14), 4977–4985 (2004). https://doi.org/10.1016/j.polymer.2004.05.016

    Google Scholar 

  • Nagamatsu, K., Takemura, T., Yoshitomi, T., Takemoto, T.: Effect on crystallinity on the viscoelastic properties of polyethylene. J. Polym. Sci. 33(126), 515–518 (1958)

    Article  Google Scholar 

  • Narayanaswamy, O.S.: A model of structural relaxation in glass. J. Am. Ceram. Soc. 54 (1971). https://doi.org/10.1111/j.1151-2916.1971.tb12186

  • Rouse, P.E.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21(7), 1272–1280 (1953). https://doi.org/10.1063/1.1699180

    Article  Google Scholar 

  • Rühl, A.: On the time and temperature dependent behaviour of laminated amorphous polymers subjected to low-velocity impact. Dissertation, Technische Universität Darmstadt (2016)

  • Rühl, A., Kolling, S., Schneider, J.: Characterization and modeling of poly(methyl methacrylate) and thermoplastic polyurethane for the application in laminated setups. Mech. Mater. 113, 102–111 (2017). https://doi.org/10.1016/j.mechmat.2017.07.018

    Article  Google Scholar 

  • Schneider, J., Kuntsche, J., Schula, S., Schneider, F., Wörner, J.-D.: Glasbau Grundlagen, Berechnung, Konstruktion, vol. 2. Springer, Berlin (2016)

    Google Scholar 

  • Schwarzl, P.D.F.R.: Polymermechanik. Springer, Berlin (1990)

    Book  Google Scholar 

  • Stark, W., Jaunich, M.: Investigation of ethylene/vinyl acetate copolymer (EVA) by thermal analysis DSC and DMA. Polym. Test. 30(2), 236–242 (2011). https://doi.org/10.1016/j.polymertesting.2010.12.003

    Article  Google Scholar 

  • Stommel, M., Stojek, M., Korte, W.: FEM zur Berechnung von Kunststoff- und Elastomerbauteilen. Hanser, Munich (2011)

    Book  Google Scholar 

  • Williams, M.L., Landel, R.F., Ferry, H.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14) (1955). https://doi.org/10.1021/ja01619a008

  • Woicke, N., Keuerleber, M., Hegemann, B., Eyerer, P.: Three-dimensional thermorheological behavior of isotactic polypropylene across glass transition temperature. J. Appl. Polym. Sci. 94(3), 877–880 (2004). https://doi.org/10.1002/app.20875

    Article  Google Scholar 

  • Z-70.3-230: Allgemeine bauaufsichtliche Zulassung Z-70.3-230 Verbundsicherheitsglas aus der Produktfamilie SAFLEX DG mit Schubverbund. In: Prüfamt, D.I.f.B.-Z.f.B.u.B.-B. (ed.) (2016)

  • Z-70.3-236: Allgemeine bauaufsichtliche Zulassung Z-70.3-236 Verbund-Sicherheitsglas mit der PVB-Folie TROSIFOL ES mit Schubverbund. In: Prüfamt, D.I.f.B.-Z.f.B.u.B.-B. (ed.) (2016)

Download references

Acknowledgements

At this point we would like to thank the following institutions and persons for their valuable support in this work: Dr. Christoph Mittermeier from the Institute of Mechanics (LRT4) of the Faculty of Aerospace at the University of German Armed Forces Munich for the possibility of carrying out DSC experiments, the Institute of Mechanics and Materials Research at THM Giessen for the possibility of carrying out the double-shear DMTA experiment, the Institute of Construction and Building Materials at TU Darmstadt for the possibility of carrying out the DSC tests, the two students Eve Laberge (International Research Experience Program at the TU Darmstadt) and Lars Christ (University of German Armed Forces Munich) for their valuable research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Schuster.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuster, M., Kraus, M., Schneider, J. et al. Investigations on the thermorheologically complex material behaviour of the laminated safety glass interlayer ethylene-vinyl-acetate. Glass Struct Eng 3, 373–388 (2018). https://doi.org/10.1007/s40940-018-0074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40940-018-0074-9

Keywords

Navigation