Skip to main content

Advertisement

Log in

Mapping of soils and land-related environmental attributes in modern agriculture systems using geomatics

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

The need for reliable information about soil water has become increasingly necessary in recent times. Which represent an important input data into ecological, hydrological, or land surface models. A total number of 460 soil samples were collected to perform inverse distance weighting (IDW) estimates to map some soil quality properties. Moreover, soil profiles were used to apply geo-statistical analysis. Maps were produced with available soil information on soil texture and organic matter. Their unknown reliability hampers the estimation of the accuracy of models that rely on soil information. The hydraulic properties of field soils can improve predictions for such models using remote sensing data (RS). Scientific study and models application at various geographic scales can both benefit from a reliable soil water map. It is also essential for the development and spatial implementation of the comprehensive soil quality index (SQ) planned in the examined study. The assessment of soil suitability for agricultural purposes was based on important physical, chemical and environmental parameters. It is indicated that 81% of the samples fall within the moderately appropriate category S2. These samples are found in the upper and middle parts of the investigated area. The remaining percentage (19%), located in the south of the region, was marginally suitable for class S3. The calculated coefficients were also used in addition to estimating the suitability of irrigation. Accordingly, most areas are unsuitable for (surface) irrigation under natural conditions and require a special type of irrigation method. Improving irrigation management techniques and using appropriate plants is the basis of irrigation water management according to soil characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adhikari K, Hartemink AE, Minasny B, Bou Kheir R, Greve MB, Greve MH (2014) Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS One 9:e105519. https://doi.org/10.1371/journal.pone.0105519

    Article  Google Scholar 

  • Ahmad N, Pandey P (2018) Assessment and monitoring of land degradation using geospatial technology in Bathinda district, Punjab, India. Solid Earth 9(75–90):2018. https://doi.org/10.5194/se-9-75-2018

    Article  Google Scholar 

  • Ahuja LR, Naney JW, Williams RD (1985) Estimating soil water characteristics from simpler properties or limited data. Soil Sci Coc Am J 49:1100–1105. https://doi.org/10.2136/sssaj1985.03615995004900050005x

    Article  Google Scholar 

  • Akpoti K, Kabo-bah AT, Zwart SJ (2019) Agricultural land suitability analysis: state-of-the-art and outlooks for integration of climate change analysis. Agric Syst 173:172–208. https://doi.org/10.1016/j.agsy.2019.02.013

    Article  Google Scholar 

  • Antoni V, Soubelet H, Rayé G, Eglin T, Bispo A, Feix I, Slak M-F, Thorette J, Fort J-L, Sauter J (2019) Contribution of knowledge advances in soil science to meet the needs of French State and society. In: Richer-de-Forges AC, Carré F, McBratney AB, Bouma J, Arrouays D (eds) Global soil security: towards more science-society interfaces. CRC Press Taylor & Francis, London, pp 33–40

    Google Scholar 

  • Arrouays D, Grundy MG, Hartemink AE, Hempel JW, Heuvelink GBM, Hong SY, Lagacherie P, Lelyk G, McBratney AB, McKenzie NJ et al (2014) GlobalSoilMap: toward a fine-resolution global grid of soil properties. Adv Agron 125:93–134

    Article  Google Scholar 

  • Asokan A, Anitha J (2019) Change detection techniques for remote sensing applications: a survey. Earth Sci Inf 12(2):143–160. https://doi.org/10.1007/s12145-019-00380-5

    Article  Google Scholar 

  • Baker L, Ellison D (2008) Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma 144:212–224. https://doi.org/10.1016/j.geoderma.2007.11.016

    Article  Google Scholar 

  • Bannari A, Khurshid KS, Staenz K, Schwarz J (2008) Potential of hyperion EO-1 hyperspectral data for wheat crop chlorophyll content estimation. Can J Rem Sens 34(Suppl. 1):S139–S157. https://doi.org/10.5589/m08-001

    Article  Google Scholar 

  • Behrens T, Schmidt K, Viscarra Rossel RA, Gries P, Scholten T, MacMillan RA (2018) Spatial modelling with Euclidean distance fields and machine learning. Eur J Soil Sci 69:757–770. https://doi.org/10.1111/ejss.12687

    Article  Google Scholar 

  • Bouma J (1989) Using soil survey data for quantitative land evaluation. Springer, New York, pp 177–213

    Google Scholar 

  • Bouyoucos CJ (1962) Hydrometer method improved for making particle-size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. Int Conf Mach Learn. https://doi.org/10.1145/1143844.1143865

    Article  Google Scholar 

  • Caruana R, Karampatziakis N, Yessenalina A (2008) An empirical evaluation of supervised learning in high dimensions. In: Proceedings of 25th international conference machine learning-ICML’08, p 96–103, https://doi.org/10.1145/1390156.1390169

  • Chaney NW, Wood EF, McBratney AB, Hempel JW, Nauman TW, Brungard CW, Odgers NP, POLARIS (2016) A 30-meter probabilistic soil series map of the contiguous United States. Geoderma 274:54–67. https://doi.org/10.1016/j.geoderma.2016.03.025

    Article  Google Scholar 

  • Chen S, Richer-de-Forges AC, Saby NPA, Martin MP, Walter C, Arrouays D (2018) Building a pedotransfer function for soil bulk density on regional dataset and testing its validity over a larger area. Geoderma 312:52–63. https://doi.org/10.1016/j.geoderma.2017.10.009

    Article  Google Scholar 

  • Cichota R, Vogeler I, Snow VO, Webb TH (2013) Ensemble pedotransfer functions to derive hydraulic properties for New Zealand soils. Soil Res 51:94–111. https://doi.org/10.1071/SR12338

    Article  Google Scholar 

  • Cisty M, Celar L, Minaric P (2015) Conversion between soil texture classification systems using the random forest algorithm. Air Soil Water Res 8:67–75. https://doi.org/10.4137/ASWR.S31924

    Article  Google Scholar 

  • Climate (2013) Global warming, and daylight charts and data. Climate charts; Ismailia, Egypt. https://www.climate-charts.com/Locations/e/UB62366.html

  • Climate (2014) Al-Salheya Al-Gedida—climate graph, temperature graph, climate table. Climate-Data.org. Accessed 02 Jan 2014

  • Dai Y, Shangguan W, Duan Q, Liu B, Fu S, Niu G-Y (2013) Development of a china dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J Hydrometeorol 14:869–887. https://doi.org/10.1175/JHM-D-12-0149.1

    Article  Google Scholar 

  • Daughtry CST et al (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74:229–239

    Article  Google Scholar 

  • De Feudis M, Falsone G, Gherardi M, Speranza M, Vianello G, Antisari LV (2021) GIS-based soil maps as tools to evaluate land capability and suitability in a coastal reclaimed area (Ravenna, northern Italy). Int Soil Water Conserv Res 9(2):167–179. https://doi.org/10.1016/j.iswcr.2020.11.007

    Article  Google Scholar 

  • Dharumarajan S, Hegde R, Singh SK (2017) Spatial prediction of major soil properties using Random Forest techniques—a case study in semi-arid tropics of South India. Geoderma Reg 10:154–162. https://doi.org/10.1016/j.geodrs.2017.07.005

    Article  Google Scholar 

  • Ebhuoma O, Gebreslasie M, Ngetar NS, Phinzi K, Bhattacharjee S (2022) soil erosion vulnerability mapping in selected rural communities of uThukela Catchment, South Africa, using the analytic hierarchy process. Earth Syst Environ. https://doi.org/10.1007/s41748-022-00308-y

    Article  Google Scholar 

  • El-Haddad IM (2002) Hydrogeological studies and their environmental impact on future management and sustainable development of the new communities and their surroundings, East of the Nile Delta, Egypt. Ph.D. thesis, Fac. Sci Mans Univ, Egypt

  • Embaby AAA, Beheary MS, Rizk Sally M (2017) Groundwater Quality assessment for drinking and irrigation purposes in El-Salhia Plain East Nile Delta Egypt. Int J Innov Eng Technol (IJIET) (Special issue on EGE 2017) p51:73. http://ijiet.com/wp-content/uploads/2017/10/107.pdf

  • Escadafal R, Bacha S (1996) Strategy for the dynamic study of desertification. http://horizon.documentation.ird.fr/exldoc/pleins_textes/pleins_textes_6/colloques2/010008392.pdf

  • Escadafal, R, Huete A (1991) ‘Etude des propriétés spectrales des sols arides appliquée à l’amélioration des indices de végétation obtenus par télédétection’. Comptes Rendus de l’Académie des Sciences. Série 2 : Mécanique. 312:1385–91

  • Escadafal R, Huete AR (1992) Soil optical properties and environmental applications of remote sensing. In: Proceedings of the technical commission VII: interpretation of photographic and remote sensing data, Washington, DC, p 709–715

  • Escadafal R, Pouget M (1987) Cartographie des formations superficielles en zone aride (tunisie méridionale) avec Landsat TM Photo Interpret. 26(4):9–12

  • Escadafal R, Belghith A, Ben Moussa H (1994) Indices Spectraux Pour La Télédétection de La Dégradation Des Milieux Naturels En Tunisie Aride. In Actes Du Sixième Symposium International" Mesures Physiques et Signatures Spectrales En Télédétection, p 17–21

  • Farkas C, Rajkai K, Kertész M, Bakacsi Z, Meirvenne M (2008) Spatial variability of soil hydro-physical properties: a case study in Herceghalom, Hungary. In: Krasilnikov P, Carré F, Montanarella L (eds) 2008: Soil geography and geostatistics, concepts and applications. Joint Research Centre, Luxembourg, p 107–128. https://esdac.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR23290.pdf (Accessed 11 Sept 2018

  • Ferrer Julià M, Estrela Monreal T, Del Corral S, Jiménez A, García Meléndez E (2004) Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction. Geoderma 123:257–277. https://doi.org/10.1016/j.geoderma.2004.02.011

    Article  Google Scholar 

  • Foley J, Ramankutty N, Brauman K et al (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452

    Article  Google Scholar 

  • Gad MI (1995) Hydrogeological Studies for Groundwater Reservoirs, East of Tenth of Ramadan City and vicinities. M.Sc. thesis, Fac. Sci., Ain Shams Univ

  • Gascon F, Fabrizzio R (2017) Sentinel-2 data exploitation with ESA's sentinel-2 toolbox. In: EGU general assembly conference abstracts ‏

  • Gitelson A, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58:289–298

    Article  Google Scholar 

  • Goetz SJ, Baccini A, Laporte NT, Johns T, Walker W, Kellndorfer J, Houghton RA, Sun M (2009) Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balanc Manag 4:2. https://doi.org/10.1186/1750-0680-4-2

    Article  Google Scholar 

  • Haboudane D, Mille JR, Tremblay N, Zarco-Tejada PJ, Dextraze L (2002) Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ 81(2–3):416–426. https://doi.org/10.1016/S0034-4257(02)00018-4

    Article  Google Scholar 

  • Hancock DW, Dougherty CT (2007) Relationships between blue- and red-based vegetation indices and leaf area and yield of alfalfa. Crop Sci 47:2547–2556

    Article  Google Scholar 

  • Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017) SoilGrids 250 m: global gridded soil information based on machine learning. PLoS One 12:e0169748. https://doi.org/10.1371/journal.pone.0169748

    Article  Google Scholar 

  • Hengl T, Nussbaum M, Wright MN, Heuvelink BM (2018) Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ. https://doi.org/10.7287/peerj.preprints.26693v3

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • İmamoglu A, Dengiz O (2019) Evaluation of soil quality index to assess the influence of soil degradation and desertification process in sub-arid terrestrial ecosystem. Rend Fis Acc Lincei 30:723–734. https://doi.org/10.1007/s12210-019-00833-5

    Article  Google Scholar 

  • Kairis O, Dimitriou V, Aratzioglou C, Gasparatos D, Yassoglou N, Kosmas C, Moustakas N (2020) A comparative analysis of a detailed and semi-detailed soil mapping for sustainable land management using conventional and currently applied methodologies in Greece. Land 9:154. https://doi.org/10.3390/land9050154

    Article  Google Scholar 

  • Kalichkin VK, Pavlova AI, Logachova OM (2021) GIS-based multi-criteria analysis of the suitability of western Siberian forest-steppe lands. Ann GIS 27(2):225–237. https://doi.org/10.1080/19475683.2020.1848920

    Article  Google Scholar 

  • Kaufman YJ, Tanre D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sens 30:261–270

    Article  Google Scholar 

  • Khanal S, Kushal KC, Fulton JP, Shearer S, Ozkan E (2020) Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sens 12:3783. https://doi.org/10.3390/rs12223783

    Article  Google Scholar 

  • Kimsey MJ, Laing LE, Anderson SM, Bruggink J, Campbell S, Diamond D, Domke GD, Gries J, Holub SM, Nowacki G, Page-Dumroese DS, Perry CH, Rustad LE, Stephens K, Vaughan R (2020) Soil mapping, monitoring, and assessment. In: Pouyat R, Page-Dumroese D, Patel-Weynand T, Geiser L (eds) Forest and rangeland soils of the United States under changing conditions. Springer, Cham. https://doi.org/10.1007/978-3-030-45216-2_9

  • Koç C (2022) A study on solutions and problems of hydroelectric power plants in the operation. Sustain Water Resour Manag 8:90. https://doi.org/10.1007/s40899-022-00677-2

    Article  Google Scholar 

  • Koch A, McBratney A, Adams M, Field D, Hill R, Crawford J, Minasny B, Lal R, Abbott L, O’Donnell A et al (2013) Soil security: solving the global soil crisis. Glob Policy 4:434–441

    Article  Google Scholar 

  • Koestel J, Jorda H (2014) What determines the strength of preferential transport in undisturbed soil under steady-state flow? Geoderma 217:144–160. https://doi.org/10.1016/j.geoderma.2013.11.009

    Article  Google Scholar 

  • Maimouni S, Bannari A (2011) Cartographie de La Dégradation Des Sols En Milieu Semi-Aride. 10

  • Mandal UK (2016) Spectral color indices based geospatial modeling of soil organic matter in Chitwan District, Nepal. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci 1(18):43–48

    Article  Google Scholar 

  • Marthews TR, Quesada CA, Galbraith DR, Malhi Y, Mullins CE, Hodnett MG, Dharssi I (2014) High resolution hydraulic parameter maps for surface soils in tropical South America. Geosci Model Dev 7:711–723. https://doi.org/10.5194/gmd-7-711-2014

    Article  Google Scholar 

  • Matos-Moreira M, Lemercier B, Dupas R, Michot D, Viaud V, Akkal-Corfini N, Louis B, Gascuel-Odoux C (2017) High resolution mapping of soil phosphorus concentration in agricultural landscapes with readily available or detailed survey data. Eur J Soil Sci 68:281–294. https://doi.org/10.1111/ejss.12420

    Article  Google Scholar 

  • Maurya K, Mahajan S, Chaube N (2021) Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. Complex Intell Syst 7:2797–2818. https://doi.org/10.1007/s40747-021-00457-z

    Article  Google Scholar 

  • McBratney AB, Field DJ, Koch A (2014) The dimensions of soil security. Geoderma 213:203–213

    Article  Google Scholar 

  • McNeill SJ, Lilburne LR, Carrick S, Webb TH, Cuthill T (2018) Pedotransfer functions for the soil water characteristics of New Zealand soils using S-map information. Geoderma 326:96–110. https://doi.org/10.1016/j.geoderma.2018.04.011

    Article  Google Scholar 

  • Mohameed AJ, Hussein AM (2020) Soil properties analysis by using geometrics techniques center Al-Ramady city/case study. PalArch’s J Archaeol Egypt Egyptol 17(6):16433–16450

  • Montzka C, Herbst M, Weihermüller L, Verhoef A, Vereecken H (2017) A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves. Earth Syst Sci Data 9:529–543. https://doi.org/10.5194/essd-9-529-2017

    Article  Google Scholar 

  • Motaghian HR, Mohammadi J (2011) Spatial estimation of saturated hydraulic conductivity from terrain attributes using regression, kriging, and artificial neural networks. Pedosphere 21:170–177. https://doi.org/10.1016/S1002-0160(11)60115-X

    Article  Google Scholar 

  • Nikiel CA, Eltahir EAB (2021) Past and future trends of Egypt’s water consumption and its sources. Nat Commun 12:4508. https://doi.org/10.1038/s41467-021-24747-9

    Article  Google Scholar 

  • Nussbaum M, Spiess K, Baltensweiler A, Grob U, Keller A, Greiner L, Schaepman ME, Papritz A (2018) Evaluation of digital soil mapping approaches with large sets of environmental covariates. Soil 4:1–22. https://doi.org/10.5194/soil-4-1-2018

    Article  Google Scholar 

  • Okaingni J-C, Kouamé KF, Martin A (2010) Cartographie Des Cuirasses Dans Les Formations Volcano- Sédimentaires de La Zone d’anikro- Kadiokro (Côte d’Ivoire) à l’aide de La Théorie Des Fonctions de Croyance. Revue Télédétection 9(1):19–32

    Google Scholar 

  • Olson RS, La Cava W, Mustahsan Z, Varik A, Moore JH (2018) Data-driven advice for applying machine learning to bioinformatics problems. In: Altman RB, Dunker AK, Hunter L, Ritchie MD, Murray TA, Klein TE (eds) Biocomputing 2018, World Scientific, p 192–203. https://doi.org/10.1142/10864.Accessed 27 May 2019

  • Pachepsky Y, Shcherbakov R, Várallyay G, Rajkai K (1982) Soil water retention as related to other soil physical properties. Pochvovedenie 2:42–52

    Google Scholar 

  • Pouget M, Madeira Le Floch J, Kamal ES (1990) Caractéristiques spectrales des surfaces sableuses de la région cotière Nord-Ouest de l'Egypte: Application aux données satellitaires SPOT 2ème Journées de Télédétection: Caractérisation et suivi des milieux terrestres en régiones arides et tropicales. 4–6/12/1990, Collection Colloques et Séminaires, Ed. ORSTOM, Paris. p 27–38

  • Qi J et al (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48:119–126

    Article  Google Scholar 

  • Radwan TM (2019) monitoring agricultural expansion in a newly reclaimed area in the Western Nile Delta of Egypt using landsat imageries. Agriculture 9:137. https://doi.org/10.3390/agriculture9070137

    Article  Google Scholar 

  • Radwan TM, Blackburn GA, Whyatt JD, Atkinson PM (2019) Dramatic loss of agricultural land due to urban expansion threatens food security in the Nile Delta, Egypt. Remote Sens 11:332. https://doi.org/10.3390/rs11030332

    Article  Google Scholar 

  • Ramcharan A, Hengl T, Beaudette D, Wills S (2017) A Soil bulk density pedotransfer function based on machine learning: a case study with the NCSS soil characterization database. Soil Sci Soc Am J 81:1279–1287. https://doi.org/10.2136/sssaj2016.12.0421

    Article  Google Scholar 

  • Rawls W, Brakensiek D (1982) Estimating soil water retention from soil properties. J Irrig Drain Div 108:166–171

    Article  Google Scholar 

  • Ray SS, Singh JP, Das G, Panigrahy S (2014) Use of high resolution remote sensing data for generating site-specific soil management plan, 6.

  • Richer-de-Forges AC, Arrouays D (2010) Analysis of requests for information and data from a national soil data centre. Soil Use Manag 26:374–378

  • Román Dobarco M, Cousin I, Le Bas C, Martin MP (2019) Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma 336:81–95. https://doi.org/10.1016/J.GEODERMA.2018.08.022

    Article  Google Scholar 

  • de la Rosa D, van Diepen CA (2002) Qualitative and quantitative land evaluation, in 1.5. land use and land cover, in encyclopedia of life support system (EOLSS-UNESCO), Eolss Publishers, Oxford. http://www.eolss.net

  • Santos-Francés F, Martínez-Graña A, Ávila-Zarza C, Criado M, Sánchez-Sánchez Y (2022) Soil quality and evaluation of spatial variability in a semi-arid ecosystem in a region of the southeastern Iberian Peninsula (Spain). Land 11:5. https://doi.org/10.3390/land11010005

    Article  Google Scholar 

  • Saxton KE, Rawls W, Romberger JS, Papendick RI (1986) Estimating generalized soil-water characteristics from texture. Scoi Sci Soc Am J 50:1031–1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x

    Article  Google Scholar 

  • Sequeira CH, Wills SA, Seybold CA, West LT (2014) Predicting soil bulk density for incomplete databases. Geoderma 213:64–73

    Article  Google Scholar 

  • Souza ED, Batjes NH, Pontes LM (2016) Pedotransfer functions to estimate bulk density from soil properties and environmental covariates: Rio Doce basin. Sci Agric 73:525–534. https://doi.org/10.1590/0103-9016-2015-0485

    Article  Google Scholar 

  • StéphaneKoff A, Fora AA, Elbelrhiti H (2016) Cartographie de l’état Du Couvert Végétal Du Nord de La Côte d’ivoire à Partir d’images Satellites: Exemple de La Zone de Korhogo. European Scientific Journal, ESJ 12(29):204

    Article  Google Scholar 

  • Stomph TJ, Fresco LO, Keulen HV (1994) (1994) Land use system evaluation: Concepts and methodology. Agric Syst 44(3):243–255. https://doi.org/10.1016/0308-521X(94)90222-2

    Article  Google Scholar 

  • Tolche AD, Gurara MA, Pham QB, Anh DT (2021) Modelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach. Geocarto Int. https://doi.org/10.1080/10106049.2021.1959656

    Article  Google Scholar 

  • Tóth B, Makó A, Tóth G (2014) Role of soil properties in water retention characteristics of main Hungarian soil types. J Cent Eur Agric 15:137–153. https://doi.org/10.5513/JCEA01/15.2.1465

    Article  Google Scholar 

  • Tóth B, Weynants M, Pásztor L, Hengl T (2017) 3-D soil hydraulic database of Europe at 250m resolution. Hydrol Proc 31:2662–2666. https://doi.org/10.1002/hyp.11203

    Article  Google Scholar 

  • USDA (2003) Soil survey laboratory manual, soil survey investigation report no. 42, version 4.0, USDA-NRCS, Nebraska, US

  • Van Looy K, Bouma J, Herbst M, Koestel J, Minasny B, Mishra U, Montzka C, Nemes A, Pachepsky YA, Padarian J, Schaap MG, Tóth B, Verhoef A, Vanderborght J, van der Ploeg MJ, Weihermüller L, Zacharias S, Zhang Y, Vereecken H (2017) Pedotransfer functions in earth system science: challenges and perspectives. Rev Geophys 55:1199–1256. https://doi.org/10.1002/2017RG000581

    Article  Google Scholar 

  • Vereecken H, Maes J, Feyen J, Darius P (1989) Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci 148:389–403. https://doi.org/10.1097/00010694-198912000-00001

    Article  Google Scholar 

  • Wu X, Lu G, Wu Z (2018) An integration approach for mapping field capacity of china based on multi-source soil datasets. Water 10:728. https://doi.org/10.3390/w10060728

    Article  Google Scholar 

  • Xiao-hui L, Feng Y, Cai J, Ming-ming Z, Tao-fa Z (2012) Comparison of geostatistical interpolation methods for local singularity exponent calculation. Sci Geogr Sin 32(2):136–142

    Google Scholar 

  • Xu Z, Wang X, Chai J, Qin Y, Li Y (2017) Simulation of the spatial distribution of hydraulic conductivity in porous media through different methods. Math Probl Eng 2017:1–10. https://doi.org/10.1155/2017/4321918

    Article  Google Scholar 

  • Zhang Y, Schaap MG (2017) Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J Hydrol 547:39–53. https://doi.org/10.1016/j.jhydrol.2017.01.004

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based upon work supported by Science, Technology & Innovation Funding Authority (STDF) under grant (ESIP 2019) project ID (33547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. E. AbdelRahman.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbdelRahman, M.A.E., Farg, E., Saleh, A.M. et al. Mapping of soils and land-related environmental attributes in modern agriculture systems using geomatics. Sustain. Water Resour. Manag. 8, 116 (2022). https://doi.org/10.1007/s40899-022-00704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-022-00704-2

Keywords

Navigation