Skip to main content
Log in

Dynamics of physico-chemical limnology of a shallow wetland in Kashmir Himalaya (India)

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

The variability in surface water chemistry within and between aquatic ecosystems is regulated by many factors operating at several spatial and temporal scales. The present study was carried out on one of the famous shallow wetlands of Kashmir known as Hokersar wetland. As the wetland is under tremendous pressure of anthropogenic activities besides suffering from internal wetland processes, it becomes imperative to study the seasonal dynamics of various physico-chemical characteristics of water. For this purpose, six study sites were chosen for the collection of water samples from September 2013 to August 2014. Among the parameters recorded, lower values of depth (0.9 m), dissolved oxygen (2.4 mg/L), higher values of chloride (44 mg/L), ammonical nitrogen (251 µg/L), nitrate nitrogen (688 µg/L) and both the forms of phosphorus reflect that the wetland is under the heavy influence of sewage, silt and unmanaged agricultural activities in the surrounding catchment which seems to be the foremost cause of deterioration of the wetland waters. When the present study is compared with the previous studies in terms of physico-chemical characteristics of water, it clearly reveals that some aspects depict distinct variations while some showed close proximity. Further, some of the recorded parameters of water were in range with national standards while some portray wide variations. Principal component analysis revealed that component 1 explains 82.157% of the variation, component 2 with 8.345% variation and component 3 having 3.26% variation. Among various parameters, nitrate nitrogen, total alkalinity and total hardness contribute strongly towards the seasonality of the remaining parameters in the wetland. From the present study, it seems that the wetland has still the capacity to absorb major nutrients especially the nitrogen and phosphorus that drain from the immediate catchment into the Queen wetland of Kashmir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad SS, Reshi ZA, Shah MA, Rashid I, Ara R, Andrabi SMA (2014) Phytoremediation potential of Phragmites australis in Hokersar Wetland—a Ramsar Site of Kashmir Himalaya. Int J Phytorem 16(12):1183–1191. doi:10.1080/15226514.2013.821449

    Article  Google Scholar 

  • American Public Health Association APHA (1998) Standard Methods for the Examination of Water and Waste Waters. American Public Health Association ed., Washington DC, USA

  • Balmer MB, Downing JA (2011) Carbon dioxide concentrations in eutrophic lakes: under- saturation implies atmospheric uptake. Inland Waters 1:125–132

    Article  Google Scholar 

  • Bayley SE, Vitt DH, Newbury RW, Beaty KG, Behr R, Miller C (1987) Experimental acidification of a Sphagnum-dominated peatland: first year results. Can J Fish Aquat Sci 44(Supplement 1):194–205

    Article  Google Scholar 

  • Bayley SE, Wong AS, Thompson JE (2013a) Effects of agricultural encroachment and drought on wetlands and shallow lakes in the boreal transition zone of Canada. Wetlands 33:17–28

    Article  Google Scholar 

  • Bayley SE, Wong AS, Thompson JE (2013b) Effects of agricultural encroachment and drought on wetlands and shallow lakes in the boreal transition zone of Canada. Wetlands 33:17–28. doi:10.1007/s13157-012-0349-x

    Article  Google Scholar 

  • Bhat SA, Pandit AK (2014) Surface water quality assessment of Wular lake, A Ramsar Site in Kashmir Himalaya, using discriminant analysis and WQI. Journal of Ecosystems 2014:1–18. doi:10.1155/2014/724728

    Google Scholar 

  • Billen G, Silvestre M, Grizzetti B. et al (2011) Nitrogen flows from European watersheds to coastal marine waters. In: Sutton MA, Howard CM, Erisman JW et al (eds) The European Nitrogen Assessment Cambridge University Press

  • Bureau of Indian Standards BIS (2012) Drinking water specification (Indian standards) Second Revision (IS 10500) Manak Bhavan, 9 Bahadur Shah Zafar Marg New Delhi 110002

  • Channar AG, Rind AM, Mastoi GM, Almani KF, Lashari KH, Qurishi MA, Mahar N (2014) Comparative study of water quality of Manchar lake with drinking water quality standard of world health organization. Am J Environ Prot 3(2):68–72

    Article  Google Scholar 

  • Chowdhury SH, Mazumder A (1981) Limnology of Lake Kaptai: physico-chemical features. Bangladesh J. Zool. 9(1):59–72

    Google Scholar 

  • Cole GA (1975) Textbook of Limnology. The C. V Moslbey Company, Saint Louise

    Google Scholar 

  • Cole GA (1983) Textbook of Limnology. Waveland Press, Prospect Heights

    Google Scholar 

  • CSIR (1974) Analytical Guide (Laboratory Techniques). CSIR, Pretoria, South Africa

    Google Scholar 

  • Dai GZ, Shang JL, Qiu BS (2012) Ammonia may play an important role in the succession of cyanobacterial blooms and the distribution of common algal species in shallow freshwater lakes. Glob Change Biol 18:1571–1581. doi:10.1111/j.1365-2486.2012.02638.x

    Article  Google Scholar 

  • Durand P, Breuer L, Johnes PJ, Billen G, Butturini A, Pinay G, Grinsven HV, Garnier J, Rivett M, Reay DS, Curtis C, Siemens J, Maberly S, Kaste O, Humborg C, Loeb R, Klein JD, Hejzlar J, Skoulikidis N, Kortelainen P, Lepisto A, Wright R (2011) Nitrogen processes in aquatic ecosystems. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, Grinsven HV, Grizzetti B (eds) European Nitrogen Assessment. Cambridge University Press, Cambridge, Cambridge, p 126–146

  • Edberg N, Hofsten BV (1973) Oxygen uptake of bottom sediments studied in situ and in the laboratory. Water Res 7:1285–1294

    Article  Google Scholar 

  • Erisman JW, Grinsven HV, Grizzetti B, Bouraoui F, Powlson D (2011) The European nitrogen problem in a global perspective. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, Hansen J eds.The European Nitrogen Assessment. Cambridge, UK: Cambridge University Press

  • Golterman HL, Clymo RS, Ohnstand MAM (1978) Methods for physical and chemical analysis. IBP Handbook No 8, 2nd edn. Blackwell Scientific Publication, Oxford, p 172

  • Hayes FR (1957) On the variation in bottom fauna and fish yield in relation to trophic level and lake dimensions. J Fish Res Bd Canada 14(l):l–32

    Google Scholar 

  • Idowu EO, Ugwumba AAA, Edward JB, Oso JA (2013) Study of the seasonal variation in the physico-chemical parameters of a tropical reservoir. Greener Journal of Physical Sciences 3(4):142–148

    Google Scholar 

  • Jeppesen E, Jensen JP, Sødergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45:201–218

    Article  Google Scholar 

  • Jindal R, Rumana HS (2000) Biomonitoring of water pollution in western Yamuna Canal at Yamunanagar, Haryana. J Punjab Acad Sci 2(1):177–182

    Google Scholar 

  • Kaul V, Handoo JK (1987) Chemical parameters useful in the evaluation of eutrophication and ecological state of lakes of Jammu and Kashmir. pp. 363–397. In: Agarwal SK, Garg RK (eds). Environmental Issues and Researches in India. Udaipur, India. Himanshu Publications

  • Kaul V, Trisal CL (1984) Chemical and physical characteristics of some wetland waters Kashmir. Acta Hydrochem et Hydrobiol 12(2):137–144

    Article  Google Scholar 

  • Kaul V, Trisal CL, Kaul S (1980) Mineral removal potential of some macrophytes in two lakes of Kashmir. J Indian Bot Soci 55:113–123

    Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark A (2010) Carbon storage and fluxes within freshwater Wetlands: a critical review. Wetlands 30:111–124

    Article  Google Scholar 

  • Khan MA (2015) Environmental characteristics and phytoplankton productivity of a shallow Ramsar-site floodplain in the western Himalaya. Lakes Reserv 20:69–76

    Article  Google Scholar 

  • Khan MA, Shah MA (2004) Land-use pattern in the catchment and its impact on the ecology of a sub-urban wetland, Kashmir Himalaya. In: Khan MA, Zargar MY (eds) Agriculture and Environment pp. 281–8. APH Publishing Corporation, New Delhi

  • Khan MA, Shah MA, Bashir S, Mir SS (2004) The environmental status of a Kashmir Himalayan wetland game reserve: aquatic plant communities and ecorestoration measures. Lakes Reserv Res Manage 9:125–132

    Article  Google Scholar 

  • Kumar R, Pandit AK (2007) Physico-chemical characteristics of water in Hokersar wetland in Kashmir Himalaya. Pollution Research 26(4):73–79

    Google Scholar 

  • Lavelle P, Dugdale R, Scholes R, Berhe AA, Carpenter E, Codispoti L, Izac AM, Lemoalle J, Luizao F, Scholes M, Tréguer P, Ward B (2005) p. 154–187. In: Hassan R, Scholes R, Ash N (eds) Nutrient Cycling: Ecosystems and Human Well-being: Current State and Trends Findings of the condition and trends working group of the millennium ecosystem assessment. Island Press

  • Lazzarino JK, Bachmann RW, Hoyer MV, Canfield DE (2009) Carbon dioxide super saturation in Florida lakes. Hydrobiologia 627(1):169–180

    Article  Google Scholar 

  • Maassen S, Uhlmann D, Roske I (2005) Sediment and pore water composition as a basis for the trophic evaluation of standing waters. Hydrobiologia 543:55–70

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Wiley, New York

    Google Scholar 

  • Moyle JB (1945) Some chemical factors influencing the distribution of aquatic plants in Minnesota. Amer Midl Natl 34:402–426

    Article  Google Scholar 

  • Mushatq B, Raina R, Yaseen T, Wanganeo A, Yousuf AR (2013) Variations in the physico-chemical properties of Dal Lake, Srinagar, Kashmir. African J Environ Sci Technol 7(7):624–633

    Google Scholar 

  • National Wetlands Working Group (1988) Wetlands of Canada. In Canada’s wetlands. Map folio Energy Mines Resour. Can. Environ. Can, Ottawa

    Google Scholar 

  • Naumann E (1932) Grundzuge der regionalen Limnologie. Die. Binnengewässer 11:1–176

    Google Scholar 

  • Naz M, Turkmen M (2005) Phytoplankton biomass and species composition of Lake Golbasi (Hatay-Turkey). Turkish J Biol 29:49–56

    Google Scholar 

  • Ohle W (1934) Chemische und Physikalische Untersuchungen Norddeutscher. Arch Hydrobiol 26:386–464

    Google Scholar 

  • Pandit AK (1999) Freshwater ecosystems of the Himalaya. Parthenon Publishing, New York

    Google Scholar 

  • Pandit AK. (2002) Trophic evolution of lakes in Kashmir Himalaya In: Pandit AK(ed) p 175–222. Natural Resources of Western Himalaya. Valley Book House, Srinagar-190006, J&K

  • Pandit AK, Kumar R (2006) Comparative studies on ecology of Hokersar Wetland, Kashmir: present and Past. J Himal Ecol Sustain Dev 1:73–81

    Google Scholar 

  • Poudel DD (2006) Challenges for improving surface water quality in an agricultural watershed in Louisiana. In :Coastal Environment and Water Quality, Proceedings of the AIH 25th Anniversary Meeting and International Conference, Challenges in Coastal Hydrology and Water Quality, Water Resources Publications,Highlands Ranch, CO, eds. Xu Y.J., Singh V.P., 251–261

  • Poudel DD, Simon MJ (2008) Pasture-based dairy and water hyacinth (Eichornia crassipes) for reduced biological oxygen demand in dairy discharge water. Outlook Agric 37(2):135–142

    Article  Google Scholar 

  • Poudel DD, Thakur RP, Duex T, Blakewood G, Singh A, DeRamus A, Chapagain B, Acharya K, Adhikari S, Gramling RB, Sharma N (2013) Adapting livestock production systems to climate change in Nepal: Challenges and opportunities. In: Michalk DL, Miller GD, Badgery WB, Broadfoot KM (eds) Proceedings of the 22nd International Grassland Congress, Sydney, Australia, New South Wales Department of Primary Industry, Kite St. Orange New South Wales, Australia, pp 1362–1367

    Google Scholar 

  • Rather SA, Pandit AK (2002) Phytoplankton dynamics in Hokarsar wetland. Kashmir J Res Dev 2:25–46

    Google Scholar 

  • Rather SA, Bhat SA, Pandit AK (2001) Water quality of Hokarsar, a typical wetland of Kashmir. J Res Dev l:39–44

    Google Scholar 

  • Raven JA (1970) Exogenous inorganic carbon sources in plant photosynthesis. Biol Rev 45:167–221

    Article  Google Scholar 

  • Rawson DS (1955) Morphometry as a dominant factor in the productivity of large lakes. Verh Internat Verein Limnol 12:164–175

    Google Scholar 

  • Rebelo LM, McCartney MP, Finlayson CM (2010) Wetlands of sub-Saharan Africa: distribution and contribution of agriculture to livelihoods. Wetlands Ecol Manage 18:557–572

    Article  Google Scholar 

  • Richardson CJ (1989) Freshwater wetlands: transformers, filters, or sinks? In: Sharitz RR, Gibbons JW (eds) Freshwater wetlands and wildlife. US Dep. of Energy Office of Sci. and Tech. Info, Oak Ridge, pp 25–46

    Google Scholar 

  • Riley JP, Chester R (1971) Introduction to marine chemistry. Acad. Press, London, p 465

    Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci 106:203–208

    Article  Google Scholar 

  • Shah JA, Pandit AK (2012) Physico-chemical characteristics of water in Wular lake-A Ramsar Site in Kashmir Himalaya. Int J Geol, Earth Environ Sci 2(2):257–265

    Google Scholar 

  • Shah JA, Pandit AK (2013) Relation between physico-chemical limnology and crustacean community in Wular lake of Kashmir Himalaya. Pak J Biol Sci 16(19):976–983

    Article  Google Scholar 

  • Shah JA, Pandit AK, Shah GM (2013) Distribution, diversity and abundance of copepod zooplankton of Wular Lake, Kashmir Himalaya. J Ecol Nat Environ 5(2):24–29

    Article  Google Scholar 

  • Shah JA, Pandit AK, Shah GM (2014) Spatial and temporal variations of nitrogen and phosphorus in Wular lake leading to eutrophication. Ecologia 4(2):44–55. doi:10.3923/ecologia

    Article  Google Scholar 

  • Shah JA, Pandit AK, Shah GM (2015) A research on rotifers of aquatic ecosystems of Kashmir Himalaya for documentation and authentication. Proc Natl Acad Sci India Sect B Biol Sci 85(1):13–19. doi 10.1007/s40011-014-0334-7

  • Sharma S, Solanki CM, Sharma D, Tali I (2013) Population dynamics of Planktons in river Narmada at Omkareshwar. Int J Adv Res 1(1):11–15

    Google Scholar 

  • Shiklomanov IA (1993) World water resources. In: Gleick PH (ed) Water in Crisis, Oxford University Press, New York and Oxford

  • Søndergaard M (1989) Phosphorus release from a hypertrophic lake sediment: experiments with intact sediment cores in a continuous flow system. Arch Hydrobiol 116:45–59

    Google Scholar 

  • Tepe Y, Turkmen A, Mutlu E, Ates A (2005) Some physico-chemical characteristics of Yarselli Lake, Turkey. Turkish J Fish Aquat Sci 5:35–42

    Google Scholar 

  • Thienemann A (1925) Die binnengewasser Nittelewopas Eine limnologische Einfuhrung. Binnengegewasses 1:1–225

    Google Scholar 

  • Thomas EA (1953). Empirische and experimentalla inter Suchungen Zur Kinntnis der minimum stoffe in 46 seender Schweiz

  • Thresh JC, Suckling EV, Baele JF (1976) In: Taylor EW (ed) The Examination of Water Supplies 6th edn

  • Unni KS (1985) Comparative limnology of several reservoirs in central India. Int Revue ges Hydrobiol 70(6):845–856

    Article  Google Scholar 

  • Verspagen JMH, Van de Waal DB, Finke JF, Visser PM, Huisman J (2014) Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. Ecol Lett 17:951–960

    Article  Google Scholar 

  • Wetzel RG (1960) Marl encrustation on hydrophytes in several Michigan lakes. Oikos 11:223–236

    Article  Google Scholar 

  • Wetzel RG (1973) Productivity investigations of interconnected lakes.I. The eight lakes of the Oliver and walters chains, north-eastern Indiana. Hydrobiol. Stud. 3:91–143

    Google Scholar 

  • Wetzel RG (1975) Limnology. Saunders Company, Philadelphia-London-Toronto, p 743

    Google Scholar 

  • Wetzel RG. (2001) Limnology: Lakes and Rivers. Academic Press; A Harcourt Science and Technology Company, 525B Street, Suite 1900, San Diego, California, 1000 p (Third edn)

  • Wetzel RG, Rich PH (1973) Carbon in freshwater systems. pp. 241-263. In: Woodwell GM, Pecan EV (eds) Carbon and the Biosphere Brookhaven Symposium in Biology no. 24. Technical Information Center, U.S. Atomic Energy Commission, CONF-720510, Brookhaven, N.Y

  • Williams M, Eugster W, Rastetter EB, McFadden JP, Chapin FSIII (2000) The controls on net ecosystem productivity along an arctic transect: a model comparison with flux measurements. Global Change Biol. 6((Suppl)):116–126

    Article  Google Scholar 

  • Xie P (2006) Biological mechanisms driving the seasonal changes in the internal loading of phosphorus in shallow lakes. Sci China Ser D Earth Sci 49:14–27

    Article  Google Scholar 

  • Zutshi DP (1968) Ecology of Some Kashmir lakes. Ph.D. thesis University of Kashmir Srinagar-190006 J and K India

  • Zutshi DP, Wanganeo A, Raina R (1980) Limnology of a man-made lake. Geobios 7:320–324

    Google Scholar 

Download references

Acknowledgements

Thanks are due to the Director, Centre of Research for Development and Head, Environmental Science, University of Kashmir for providing necessary laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javaid Ahmad Shah.

Ethics declarations

Competing interests

The authors declare that they have no competing interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, J.A., Pandit, A.K. & Shah, G.M. Dynamics of physico-chemical limnology of a shallow wetland in Kashmir Himalaya (India). Sustain. Water Resour. Manag. 3, 465–477 (2017). https://doi.org/10.1007/s40899-017-0115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40899-017-0115-6

Keywords

Navigation