Skip to main content
Log in

Properties of HDPE Geomembrane Exhumed 20 Years After Installation in a Mine Reclamation Cover System

  • Case Study
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

High-density polyethylene (HDPE) geomembranes (GM) are used in mine site reclamation cover systems to limit water and oxygen ingress into sulphide tailings or waste rocks, thereby reducing acid mine drainage generation. The objective of this paper is to assess the actual properties of small-scale GMs after 20 years of service in the cover system of an existing mine site. GM samples were exhumed from this site and laboratory tested to determine the standard (Std) and high pressure (HP) oxidative-induction times (OITs), tensile properties, and hydraulic and oxygen sorption/diffusion properties. Unfortunately, the initial properties of the virgin GM before the installation were not available. Properties gathered from this study were then compared to literature data or to minimal requirements for virgin HDPE GMs as defined by the Geosynthetic Research Institute (GRI). Results showed Std-OIT values exceeding the minimum requirement of 100 min for virgin GMs while the HP-OIT values are lower than the minimum requirement of 400 min. The tensile properties exceed the requirements. The fluid-tightening properties do not appear to be affected to date: the equivalent hydraulic conductivity is around 10–14 m/s, and the oxygen diffusion coefficient is around 10–13 m2/s. The GMs thus show acceptable performance to date. Further studies will be needed in the future to determine more long-term GM behaviour where the data from this study will constitute reference values (in the absence of initial properties).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Lottermoser BG (2010) Mine wastes: characterization, treatment and environmental impacts, 3rd edn. Springer, Berlin, Heidelberg, p 400

    Book  Google Scholar 

  2. Plante B, Schudel G, Benzaazoua M (2021) Prediction of acid mine drainage. In: Bussière B, Guittonny M (eds) Hard rock mine reclamation. CRC Press, Boca Raton, pp 21–46

    Google Scholar 

  3. Bussière B, Guittonny M (2021) Hard rock mine reclamation: from prediction to management of acid mine drainage. CRC Press, Boca Raton

    Google Scholar 

  4. Aubertin M, Bussière B, Pabst T, James M, Mbonimpa M (2016) Review of the reclamation techniques for acid-generating mine wastes upon closure of disposal sites. In: Farid A, De Anirban A, Reddy KR, Yesiller N, Zekkos D (eds) Geosynthetics for sustainable energy. ASCE Library, Chicago, pp 343–358

    Google Scholar 

  5. Maqsoud A, Bussière B, Mbonimpa M (2021) Low saturated hydraulic conductivity covers. In: Bussière B, Guittonny M (eds) Hard rock mine reclamation. Boca Raton, CRC Press, pp 93–113

    Google Scholar 

  6. Demers I, Pabst T (2021) Covers with capillary barrier effects. In: Bussière B, Guittonny M (eds) Hard rock mine reclamation. Boca Raton, CRC Press, pp 167–186

    Google Scholar 

  7. Bussière B, Aubertin M, Chapuis RP (2003) The behavior of inclined covers used as oxygen barriers. Can Geotech J 40(3):512–535. https://doi.org/10.1139/t03-001

    Article  Google Scholar 

  8. Yesiller N, Hanson JL, Bussière B, Pabst T, Aubertin M (2018) Use of geomembranes in reclamation covers for reactive mining waste disposal sites." In: 71st Canadian Geotechnical Conference, Edmonton, AB, CA.

  9. Müller WW (2007) HDPE geomembranes in geotechnics. Springer, Berlin

    Google Scholar 

  10. Scheirs J (2009) A guide to polymeric geomembranes: a practical approach. Wiley, New York

    Book  Google Scholar 

  11. Grassie N, Scott G (1985) Polymer degradation and stabilization. Cambridge University Press, New York

    Google Scholar 

  12. Scheirs J (2000) Compositional and failure analysis of polymers: a practical approach. Wiley, New York

    Google Scholar 

  13. Hsuan Y, Koerner R (1998) Antioxidant depletion lifetime in high density polyethylene geomembranes. J Geotech Geoenviron Eng 124(6):532–541

    Article  Google Scholar 

  14. Rollin AL, Lambert S, Pierson P (2002) Géomembranes: guide de choix sous l'angle des matériaux. Presses Inter Polytechnique, Montréal.

  15. Koerner RM (2012) Designing with geosynthetics. Xlibris Corporation, United States of America.

  16. F. Rarison (2021) Évaluation des propriétés chimiques, mécaniques et hydrogéologiques de géomembranes utilisées comme matériaux de recouvrement pour restaurer des sites miniers en milieu froid et acide, PhD, IRME, Thèse de doctorat, École Polytechnique Montréal, Université du Québec en Abitibi-Témiscamingue.

  17. Mbonimpa M, Rarison F, Bussière B, Pouliot S (2021) Utilisation et longevité des géomembranes en restauration des sites miniers. In Symposium 2021 Mines et Environnement, Rouyn-Noranda, QC, CA.

  18. Morsy M (2019) Effect of chemical and physical ageing on the longevity of smooth and textured geomembranes in geoenvironmental applications.

  19. Gulec S, Benson CH, Edil T (2003) “Effect of acid mine drainage (AMD) on the engineering properties of geosynthetics,” presented at the Tailings and Mine Waste. In: Proceedings of the 10th International Conference, Vail, Colorado. pp 12–15.

  20. Gulec S, Edil T, Benson C (2004) Effect of acidic mine drainage on the polymer properties of an HDPE geomembrane. Geosynth Int 11(2):60–72

    Article  Google Scholar 

  21. Gulec S, Benson C, Edil T (2005) Effect of acidic mine drainage on the mechanical and hydraulic properties of three geosynthetics. J Geotech Geoenviron Eng 131(8):937–950

    Article  Google Scholar 

  22. Andersland OB, Ladanyi B (2004) Frozen ground engineering. Wiley, New York

    Google Scholar 

  23. MEND (2009) “Mine Waste Covers in Cold Regions, Report 1.61.5a” MEND.

  24. MEND (2010) “Cold Regions Cover Research, Report 1.61.5b,” MEND.

  25. MEND (2012) "Cold regions cover system design technical guidance document, report 1.61.5c." MEND.

  26. Lacasse A, Amiri A (1988) "Etude de l'action du gel sur les routes," Ministère des Transports du Québec, Québec, Canada.

  27. Martin J, Gardner R (1985) Use of plastics in corrosion resistant instrumentation. Natl Assoc Corros Eng Managing Corros With Plastics 6:126–132

    Google Scholar 

  28. Koerner RM, Lord AE, Hsuan YH (1992) Arrhenius modeling to predict geosynthetic degradation. Geotext Geomembr 11(2):151–183. https://doi.org/10.1016/0266-1144(92)90042-9

    Article  Google Scholar 

  29. Hsuan Y, et al. (2008) “Long-term performance and lifetime prediction of geosynthetics.” In Proceedings of the 4th European Conference on Geosynthetics, Edinburgh, September. Keynote paper.

  30. Budiman J (1994) “Effects of temperature on physical behavior of geomembranes.” In: Proceedings of the Fifth International Conference on Geotextiles, Geomembranes, and Related Products. International Geosynthetics Society, Easley, South Carolina, USA, Singapore. pp. 1093–1096.

  31. Comer AI, Hsuan YG (1996) Freeze-thaw cycling and cold temperature effects on geomembrane sheets and seams. US Department of the Interior, Bureau of Reclamation, Materials Engineering and Research Laboratory Group, Civil Engineering Services, Technical Service Center.

  32. Hsuan Y, Koerner R, Comer A (2013) “Cold Temperature and Freeethaw Cycling Behavior of Geomembranes and their Seams (GSI White Paper 28).” Geosynthetic Institute.

  33. McWatters RS, Rutter A, Rowe RK (2016) Geomembrane applications for controlling diffusive migration of petroleum hydrocarbons in cold region environments. J Environ Manag 181:80–94. https://doi.org/10.1016/j.jenvman.2016.05.065

    Article  Google Scholar 

  34. Hsuan YG, Koerner RM, Lord AE (1993) Stress-cracking resistance of high-density polyethylene geomembranes. J Geotech Eng 119(11):1840–1855. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:11(1840)

    Article  Google Scholar 

  35. Koerner GR, Eith AW, Tanese M (1999) Properties of exhumed HDPE field waves. Geotext Geomembr 17(4):247–261. https://doi.org/10.1016/S0266-1144(98)00024-7

    Article  Google Scholar 

  36. Rowe RK, Rimal S, Arnepalli DN, Bathurst RJ (2010) Durability of fluorinated high density polyethylene geomembrane in the Arctic. Geotext Geomembr 28(1):100–107. https://doi.org/10.1016/j.geotexmem.2009.10.012

    Article  Google Scholar 

  37. Benson CH, Kucukkirca IE, Scalia J (2010) Properties of geosynthetics exhumed from a final cover at a solid waste landfill. Geotext Geomembr 28(6):536–546. https://doi.org/10.1016/j.geotexmem.2010.03.001

    Article  Google Scholar 

  38. Noval A, et al. (2014) “Long-term performance of the HDPE geomembrane at the “San Isidro” reservoir.” In: 10th International Conference on Geosynthetics. pp. 427–440.

  39. McWatters RS et al (2016) Geosynthetics in Antarctica: Performance of a composite barrier system to contain hydrocarbon-contaminated soil after three years in the field. Geotext Geomembr 44(5):673–685. https://doi.org/10.1016/j.geotexmem.2016.06.001

    Article  Google Scholar 

  40. McWatters RS, Rowe RK, Battista VD, Sfiligoj B, Wilkins D, Spedding T (2020) Exhumation and performance of an Antarctic composite barrier system after 4 years exposure. Can Geotech J 57(8):1130–1152. https://doi.org/10.1139/cgj-2018-0715

    Article  Google Scholar 

  41. GRI (2021) GM13 Standard specification for test methods, test properties and testing frequency for high density polyethylene (HDPE) smooth and textured geomembranes, GRI, Folsom, PA, United States.

  42. Lewis BA, Gallinger RD (1999) “Poirier site reclamation program,” in Sudbury ’99: mining and the environment II, Sudbury, Ontario, Canada, D. Goldsack, Ed 2:439–448

    Google Scholar 

  43. Maurice R (2002) “Restauration du site minier Poirier (Joutel), expériences acquises et suivi des travaux.” In: Défis & Perspectives: Symposium 2002 sur l'Environnement et les Mines, Rouyn-Noranda, 3–5 novembre 2002, Rouyn-Noranda, QC, 2002, vol. papier s32 a1021 p545: Développement Économique Canada/Ministère des Ressources Naturelles du Québec/CIM.

  44. Rowe RK, Islam M, Hsuan Y (2009) Effects of thickness on the aging of HDPE geomembranes. J Geotech Geoenviron Eng 136(2):299–309

    Article  Google Scholar 

  45. ASTM (2019) D5199–12 Standard test method for measuring the nominal thickness of geosynthetics, ASTM, West Conshohocken, PA, United States.

  46. ASTM (2019) D3895–19 Standard test method for oxidative-induction time of polyolefins by differential scanning calorimetry, ASTM, West Conshohocken, PA, United States.

  47. ASTM (2017) D5885/D5885M, 17 Standard test method for oxidative induction time of polyolefin geosynthetics by high-pressure differential scanning calorimetry, ASTM, West Conshohocken, PA, United States.

  48. D6693/D6693M—20 Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes, ASTM, West Conshohocken, PA, United States, 2020.

  49. AFNOR (2006) NF EN 14150 Détermination de la perméabilité aux liquides, AFNOR, La Plaine Saint-Denis, France.

  50. Rarison R, Mbonimpa M, Bussière B (2022) Effects of freeze–thaw cycles on the properties of polyethylene geomembranes. Geosynth Int. https://doi.org/10.1680/jgein.21.00043a

    Article  Google Scholar 

  51. Giroud J, Bonaparte R (1989) Leakage through liners constructed with geomembranes—part I. Geomembrane liners. Geotext Geomembr 8(1):27–67

    Article  Google Scholar 

  52. Tanaka M, Girard G, Davis R, Peuto A, Bignell N (2001) Recommended table for the density of water between 0 C and 40 C based on recent experimental reports. Metrologia 38(4):301

    Article  Google Scholar 

  53. Sangam HP, Rowe RK (2001) Migration of dilute aqueous organic pollutants through HDPE geomembranes. Geotext Geomembr 19(6):329–357

    Article  Google Scholar 

  54. Rowe RK, Booker JR (2004) POLLUTE V. 7, 1D pollutant migration through a non-homogeneous soil. Whitby, Ontario, Canada.

  55. Student A (1908) The probable error of a mean. Biometrika 6(1):1–25

    Article  MATH  Google Scholar 

  56. Lilliefors HW (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399–402

    Article  Google Scholar 

  57. Ewais A, Rowe RK (2014) “Degradation of 2.4 mm-HDPE geomembrane with high residual HP-OIT.” In: 10th International Conference on Geosynthetics (10th ICG).

  58. Ewais AMR, Rowe RK, Scheirs J (2014) Degradation behaviour of HDPE geomembranes with high and low initial high-pressure oxidative induction time. Geotext Geomembr 42(2):111–126. https://doi.org/10.1016/j.geotexmem.2014.01.004

    Article  Google Scholar 

  59. Haxo H Jr, Miedema J, Nelson N (1984) Permeability of polymeric membrane lining materials. Technical paper. Matrecon Inc, Oakland

    Google Scholar 

  60. Massey LK (2003) Permeability properties of plastics and elastomers: a guide to packaging and barrier materials. Cambridge University Press, Cambridge

    Google Scholar 

  61. Wagner JR Jr (2009) Multilayer flexible packaging: technology and applications for the food, personal care, and over-the-counter pharmaceutical industries. Elsevier Science, Amsterdam

    Google Scholar 

  62. Landry B, Senay D (2010) Portrait et enjeux miniers de l'Estrie-Version préliminaire du 20 mai 2010. Commission régionale sur les ressources naturelles et le territoire, PRDIRT.

  63. Patterson B, Robertson B, Woodbury R, Talbot B, Davis G (2006) Long-term evaluation of a composite cover overlaying a sulfidic tailings facility. Mine Water Environ 25(3):137–145

    Article  Google Scholar 

  64. Maurice R (2012) “Normétal mine tailings storage facility HDPE cover: Design considerations and performance monitoring.” In: Price WA (ed) 9th International Conference on Acid Rock Drainage, Ontario, ON. Mine Environment Neutral Drainage (MEND).

  65. Bradley C, Meiers G, Mayich D, O’Kane M, Shea J (2016) “Use of a conceptual model in advance of numerical simulations to demonstrate an understanding of loading from a reclaimed wate rock pile,” presented at the 41st CLRA National Annual General Meeting and Conference. Conference Proceedings, MCIntyre Arena, Timmins, Ontario, June 26–29, 2016, Timmins, ON.

  66. Meiers G (2015) “Use of analytical estimates and water balance components to estimate leakage rates through cover systems utilizing a geomembrane,” presented at the ACR 2015 October 21-22, 2015. Fredericton, New Brunswick, Canada.

  67. Meiers G, O’Kane M, Mayich D, Shea J, Barteaux M (2014) “Evaluation of in service performance of cover systems that utilize a geosynthetic layer,” O'Kane Consultant.

  68. Meiers G, O’Kane M, Mayich D, Weber P, Bradley C, Shea J (2015) “Closure of legacy waste rock piles: can we achieve passive treatment to manage residual seepage in the short term?” Presented at the 10th International Conference on Mine Closure, June 1–3, 2015, Vancouver, Canada.

  69. Cyr J (2011) “Restauration des sites miniers-Présentation du 22 september” MRNF, Québec.

  70. MRNF (2009) “Rehabilitation of Site No.1 at the Eustis Mining Complex (Municipalité du Canton de Hatley),” Québec mines, Bulletin d’Information Minière, Juin 2009, vol. Ministère des Ressources Naturelles et Faune, Québec.

  71. Turcotte S, Trépanier S, Bussière B (2021) “Restauration des sites miniers abandonnés au Québec : un état de la situation et revue des solutions appliquées,” presented at the Symposium 2021 Mines et Environnement, Rouyn-Noranda, Québec, Canada.

  72. Cyr J (2008) “La restauration du site minier Aldermac: un projet de 16,5M$,” presented at the QuébecMines 2008, Bulletin d'information minière, Québec.

  73. SNC-Lavalin (2007) “Plan de restauration du site minier Aldermac, Rapport final,” MRNF, Québec.

  74. SNC-Lavalin (2010) “Restauration du site minier Aldermac, Rapport tel que construit des travaux effectués en 2008–2009.” MRNF, Québec.

  75. Power C et al (2017) Five-year performance monitoring of a high-density polyethylene (HDPE) cover system at a reclaimed mine waste rock pile in the Sydney Coalfield (Nova Scotia, Canada). Environ Sci Pollut Res 24(34):26744–26762. https://doi.org/10.1007/s11356-017-0288-4

    Article  Google Scholar 

  76. ECBC (2014) “Former mine site closure program, Update 2013–2014.” Enterprise Cape Breton Corporation.

  77. Meiers G, O’Kane M, Mayich D (2012) “Field performance monitoring of a cover system with geosynthetic layers, case study–Franklin waste rock pile, Sydney NS.” O'Kane Consulting.

  78. Zetchi M, Fouquet G (2018) “Restauration du site minier abandonné Barvue”. Presented at the QuébecMines, 20–23 Novembre 2018, Québec.

  79. MINE_RAGLAN (2015) “Étude d'impact sur l'environnement et le milieu social.” Vol. 1-Rapport principal.

Download references

Acknowledgements

The authors would like to acknowledge Professor Ahmed Koubaa for use of the Laboratoire de BIOMATÉRIAUX (Biomaterials Lab) at UQAT. The authors would also like to acknowledge the owner of the Mid-North site for authorizing the use of data. The authors would also like to acknowledge the contribution of the copy editor, Margaret McKyes.

Funding

This study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the industrial partners of the Research Institute on Mine and Environment (RIME UQAT-Polytechnique: https://irme.ca/en/) through the NSERC-UQAT industrial Chair on Mine Site Reclamation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology RFMR, MM and BB; testing, characterization, and analyses RFMR; writing-original draft preparation RFMR; writing-review and editing MM and BB; verification SP; supervision MM and BB.

Corresponding author

Correspondence to Ramanambelina Faneva Mamambina Rarison.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest that could appear to affect the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rarison, R.F.M., Mbonimpa, M., Bussière, B. et al. Properties of HDPE Geomembrane Exhumed 20 Years After Installation in a Mine Reclamation Cover System. Int. J. of Geosynth. and Ground Eng. 9, 1 (2023). https://doi.org/10.1007/s40891-022-00421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-022-00421-y

Keywords

Navigation