Skip to main content

Advertisement

Log in

Development of Nanoporous Polyurethane Hydrogel Membranes for Cell Encapsulation

  • ORIGINAL RESEARCH
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Cell encapsulation for treatment of diseases like type 1 diabetes (T1D) has great potential when used in combination with development of insulin responsive beta cells. However, for translation of this therapy into clinical practice, there is a need for suitable encapsulation devices. Here, we report development of polyurethane-zwitterionic acrylate double network-based membranes for macro device-based cell encapsulation. Polyurethane hydrogels with 60 to 90% water content (WC) were evaluated for permeability and hydrogels with 80 and 90% WC were found to have highest permeability. Structural characterization of these hydrogels’ samples prepared cryogenically by scanning electron microscopy (cryo-SEM) revealed that 90% WC hydrogels were nanoporous with large interconnected pores. Tuning of porosity and structure was achieved by blending of hydrogels with varying WC resulting in pores of ~ 200 nm size. These membranes supported viability of encapsulated cells after removal of cytotoxic leachables by ethanol treatment. Double network formation was performed by UV polymerization and incorporation of zwitterionic groups was confirmed by ATR and WC of hydrogels. Varying of zwitterion type is allowed for tuning of WC of hydrogels. Gene expression of RAW 264.7 macrophages on exposure to the hydrogels found the zwitterionic double network hydrogels to be less stimulating than the bare hydrogel. To determine translational potential of the hydrogel, sterilization of the hydrogels using supercritical carbon dioxide was evaluated. Survivor enumeration testing revealed that the kill rate for the process ~ 1 log10 per 8 min and 2-h treatment is sufficient for sterility assurance level (SAL) of 10−6. Thus, we have developed hydrogel polyurethane membranes suitable for cell encapsulation in macro devices.

Lay Summary

We want to develop a device for cell encapsulation which is needed for treating diseases like T1D. In these devices, cells will be loaded and implanted in the body. These encapsulated cell secretions would provide the function of various endocrine organs. We have developed a hydrogel-based nanoporous membrane which would hold the cells and allow for exchange of nutrients and cell secretions.

Future Studies

After the development of membrane, future studies will focus on evaluating the immune response to the hydrogel as well as long term delivery of immune modulatory drugs to prevent fibrosis. Various drug encapsulation and delivery designs will be evaluated for controlled localized delivery of the drugs. The optimum combination would then be combined with the hydrogels device and test their efficacy in regulating cell viability and immune response in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. National diabetes statistics report: estimates of diabetes and its burden in the united states. Atlanta, GA: Department of Health and Human Services, Centers for Disease Control and Prevention; 2014.

  2. Kawahara T, Kin T, Kashkoush S, Gala-Lopez B, Bigam DL, Kneteman NM, et al. Portal vein thrombosis is a potentially preventable complication in clinical islet transplantation. Am J Transplant. 2011;11(12):2700–7. https://doi.org/10.1111/j.1600-6143.2011.03717.x.

    Article  CAS  Google Scholar 

  3. Nanji SA, Shapiro AMJ. Islet transplantation in patients with diabetes mellitus. BioDrugs. 2004;18(5):315–28. https://doi.org/10.2165/00063030-200418050-00004.

    Article  CAS  Google Scholar 

  4. Kieffer TJ. Closing in on mass production of mature human beta cells. Cell Stem Cell. 2016;18(6):699–702. https://doi.org/10.1016/j.stem.2016.05.014.

    Article  CAS  Google Scholar 

  5. Schulz TC. Concise review: manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cells Transl Med. 2015;4(8):927–31. https://doi.org/10.5966/sctm.2015-0058.

    Article  CAS  Google Scholar 

  6. Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One. 2012;7(5):e37004. https://doi.org/10.1371/journal.pone.0037004.

    Article  CAS  Google Scholar 

  7. Olabisi RM. Cell microencapsulation with synthetic polymers. J Biomed Mater Res A. 2015;103(2):846–59. https://doi.org/10.1002/jbm.a.35205.

    Article  CAS  Google Scholar 

  8. Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater. 2013;12(6):584–90. https://doi.org/10.1038/Nmat3606.

    Article  CAS  Google Scholar 

  9. Barkai U, Rotem A, de Vos P. Survival of encapsulated islets: more than a membrane story. World J Transplant. 2016;6(1):69–90. https://doi.org/10.5500/wjt.v6.i1.69.

    Article  Google Scholar 

  10. Teramura Y, Iwata H. Bioartificial pancreas microencapsulation and conformal coating of islet of Langerhans. Adv Drug Deliv Rev. 2010;62(7–8):827–40. https://doi.org/10.1016/j.addr.2010.01.005.

    Article  CAS  Google Scholar 

  11. Blasi P, Luca G, Mancuso F, Schoubben A, Calvitti M, Giovagnoli S, et al. Conformal polymer coatings for pancreatic islets transplantation. Int J Pharm. 2013;440(2):141–7. https://doi.org/10.1016/j.ijpharm.2012.10.010.

    Article  CAS  Google Scholar 

  12. Carlsson PO, Espes D, Sedigh A, Rotem A, Zimerman B, Grinberg H, et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas betaAir to patients with type 1 diabetes mellitus. Am J Transplant. 2018;18(7):1735–44. https://doi.org/10.1111/ajt.14642.

    Article  CAS  Google Scholar 

  13. Henry RR, Pettus J, Wilensky J, Shapiro AMJ, Senior PA, Roep B, et al. Initial clinical evaluation of VC-01TM combination product-a stem cell-derived islet replacement for type 1 diabetes (T1D). Diabetes. 2018;67:138–OR. https://doi.org/10.2337/db18-138-OR.

    Article  Google Scholar 

  14. de Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev. 2014;67–68:15–34. https://doi.org/10.1016/j.addr.2013.11.005.

    Article  CAS  Google Scholar 

  15. Selimović Š, Oh J, Bae H, Dokmeci M, Khademhosseini A. Microscale strategies for generating cell encapsulating hydrogels. Polymers. 2012;4(3):26. https://doi.org/10.3390/polym4031554.

    Article  CAS  Google Scholar 

  16. Handel N, Gutierrez J. Long-term safety and efficacy of polyurethane foam-covered breast implants. Aesthet Surg J. 2006;26(3):265–74. https://doi.org/10.1016/j.asj.2006.04.001.

    Article  CAS  Google Scholar 

  17. Castel N, Soon-Sutton T, Deptula P, Flaherty A, Parsa FD. Polyurethane-coated breast implants revisited: a 30-year follow-up. Arch Plast Surg. 2015;42(2):186–93. https://doi.org/10.5999/aps.2015.42.2.186.

    Article  Google Scholar 

  18. Stokes K, Cobain K. Polyether polyurethanes for implantable pacemaker leads.pdf. Biomaterials. 1982;3(4):7.

    Article  Google Scholar 

  19. Ward RS, White KA, Wolcott CA, Wang AY, Kuhn RW, Taylor JE, et al. Development of a hybrid artificial pancreas with a dense polyurethane membrane. ASAIO J. 1993;39(3):M261–M7.

    CAS  Google Scholar 

  20. Xie X, Doloff JC, Yesilyurt V, Sadraei A, McGarrigle JJ, Omami M, et al. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat Biomed Eng. 2018;2:894–906. https://doi.org/10.1038/s41551-018-0273-3.

    Article  CAS  Google Scholar 

  21. Liu X, Jin Q, Ji Y, Ji J. Minimizing nonspecific phagocytic uptake of biocompatible gold nanoparticles with mixed charged zwitterionic surface modification. J Mater Chem. 2012;22(5):1916–27. https://doi.org/10.1039/C1JM14178C.

    Article  CAS  Google Scholar 

  22. Carr L, Cheng G, Xue H, Jiang S. Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels. Langmuir. 2010;26(18):14793–8. https://doi.org/10.1021/la1028004.

    Article  CAS  Google Scholar 

  23. Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR, Irvin C, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol. 2013;31(6):553–6. https://doi.org/10.1038/nbt.2580.

    Article  CAS  Google Scholar 

  24. Wang K, Hou WD, Wang X, Han CS, Vuletic I, Su N, et al. Overcoming foreign-body reaction through nanotopography: biocompatibility and immunoisolation properties of a nanofibrous membrane. Biomaterials. 2016;102:249–58. https://doi.org/10.1016/j.biomaterials.2016.06.028.

    Article  CAS  Google Scholar 

  25. Smith RS, Zhang Z, Bouchard M, Li J, Lapp HS, Brotske GR, et al. Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Sci Transl Med. 2012;4(153):153ra32-ra32. https://doi.org/10.1126/scitranslmed.3004120.

    Article  CAS  Google Scholar 

  26. Kyomoto M, Moro T, Takatori Y, Kawaguchi H, Ishihara K. Cartilage-mimicking, high-density brush structure improves wear resistance of crosslinked polyethylene: a pilot study. Clin Orthop Relat Res. 2011;469(8):2327–36. https://doi.org/10.1007/s11999-010-1718-5.

    Article  Google Scholar 

  27. Garle AL, White F, Budhlall BM. Improving the antifouling properties of polypropylene surfaces by melt blending with polyethylene glycol diblock copolymers. J Appl Polym Sci. 2018;135(15):46122. https://doi.org/10.1002/app.46122.

    Article  CAS  Google Scholar 

  28. Khandwekar AP, Patil D, Shouche Y, Doble M. The biocompatibility of sulfobetaine engineered polymethylmethacrylate by surface entrapment technique. 2009.

  29. Trel'ova D, Salgarella AR, Ricotti L, Giudetti G, Cutrone A, Sramkova P, et al. Soft hydrogel zwitterionic coatings minimize fibroblast and macrophage adhesion on polyimide substrates. Langmuir. 2019;35(5):1085–99. https://doi.org/10.1021/acs.langmuir.8b00765.

    Article  CAS  Google Scholar 

  30. Kumagai-Braesch M, Jacobson S, Mori H, Jia X, Takahashi T, Wernerson A, et al. The TheraCyte™ device protects against islet allograft rejection in immunized hosts. Cell Transplant. 2013;22(7):1137–46. https://doi.org/10.3727/096368912x657486.

    Article  Google Scholar 

  31. Rafael E, Wernerson A, Arner P, Wu GS, Tibell A. In vivo evaluation of glucose permeability of an immunoisolation device intended for islet transplantation: a novel application of the microdialysis technique. Cell Transplant. 1999;8(3):317–26. https://doi.org/10.1177/096368979900800302.

    Article  CAS  Google Scholar 

  32. Rafael E, Wu GS, Hultenby K, Tibell A, Wernerson A. Improved survival of macroencapsulated islets of Langerhans by preimplantation of the immunoisolating device: a morphometric study. Cell Transplant. 2003;12(4):407–12. https://doi.org/10.3727/000000003108746957.

    Article  CAS  Google Scholar 

  33. Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J. 2004;87(6):4259–70. https://doi.org/10.1529/biophysj.104.047746.

    Article  CAS  Google Scholar 

  34. Nakashima K, Kanda Y, Hirokawa Y, Kawasaki F, Matsuki M, Kaku K. MIN6 is not a pure beta cell line but a mixed cell line with other pancreatic endocrine hormones. Endocr J. 2009;56(1):45–53. https://doi.org/10.1507/endocrj.K08E-172.

    Article  CAS  Google Scholar 

  35. Sella SR, Vandenberghe LP, Soccol CR. Bacillus atrophaeus: main characteristics and biotechnological applications - a review. Crit Rev Biotechnol. 2015;35(4):533–45. https://doi.org/10.3109/07388551.2014.922915.

    Article  CAS  Google Scholar 

  36. Yim ES, Zhao B, Myung D, Kourtis LC, Frank CW, Carter D, et al. Biocompatibility of poly(ethylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogel particles in RAW 264.7 macrophage and MG-63 osteoblast cell lines. J Biomed Mater Res A. 2009;91(3):894–902. https://doi.org/10.1002/jbm.a.32311.

    Article  CAS  Google Scholar 

  37. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. https://doi.org/10.3389/fimmu.2014.00491.

    Article  CAS  Google Scholar 

  38. Liu JMH, Zhang J, Zhang X, Hlavaty KA, Ricci CF, Leonard JN, et al. Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. Biomaterials. 2016;80:11–9. https://doi.org/10.1016/j.biomaterials.2015.11.065.

    Article  CAS  Google Scholar 

Download references

Funding

This project was made possible by the Mayo Clinic CTSA grant number UL1TR002377 from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH) and a grant from Khalifa Bin Zayed Al Nahyan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amit Garle or Yogish Kudva.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garle, A., Miller, A., Sarrafian, T. et al. Development of Nanoporous Polyurethane Hydrogel Membranes for Cell Encapsulation. Regen. Eng. Transl. Med. 6, 217–227 (2020). https://doi.org/10.1007/s40883-019-00125-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-019-00125-2

Keywords

Navigation