Skip to main content
Log in

Perverse schobers on Riemann surfaces: constructions and examples

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

This note studies perverse sheaves of categories, or schobers, on Riemann surfaces, following ideas of Kapranov and Schechtman (Perverse schobers, arXiv:1411.2772, 2014). For certain wall crossings in geometric invariant theory, we construct a schober on the complex plane, singular at each imaginary integer. We use this to obtain schobers for standard flops: in the threefold case, we relate these to a further schober on a partial compactification of a stringy Kähler moduli space, and suggest an application to mirror symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Addington, N.: New derived symmetries of some hyperkähler varieties. Algebraic Geom. 3(2), 223–260 (2016). arXiv:1112.0487

    Article  MathSciNet  MATH  Google Scholar 

  2. Anno, R., Logvinenko, T.: Spherical DG functors. J. Eur. Math. Soc. 19(9), 2577–2656 (2017). arXiv:1309.5035

    Article  MathSciNet  MATH  Google Scholar 

  3. Aspinwall, P.S.: A point’s point of view of stringy geometry (2002). arXiv:hep-th/0203111

  4. Ballard, M., Favero, D., Katzarkov, L.: Variation of geometric invariant theory quotients and derived categories. J. Reine Angew. Math. https://doi.org/10.1515/crelle-2015-0096. arXiv:1203.6643

  5. Beilinson, A.A.: How to glue perverse sheaves. In: Manin, Yu.I. (ed.) K-theory, Arithmetic and Geometry. Lecture Notes in Mathematics, vol. 1289, pp. 42–51. Springer, Berlin (1987)

  6. Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque, vol. 100. Société Mathématique de France, Paris (1982). https://webusers.imj-prg.fr. Accessed 20 Dec 2017

  7. Bodzenta, A., Bondal, A.: Flops and spherical functors (2015). arXiv:1511.00665

  8. Bondal, A., Orlov, D.: Semiorthogonal decomposition for algebraic varieties (1995). arXiv:alg-geom/9506012

  9. Bondal, A., Kapranov, M., Schechtman, V.: Perverse schobers and birational geometry. Selecta Math. (N.S.) 24(1), 85–143 (2018). arXiv:1801.08286

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, K., Pomerleano, D., Ueda, K.: Lagrangian torus fibrations and homological mirror symmetry for the conifold. Commun. Math. Phys. 341(1), 135–178 (2016). arXiv:1305.0968

    Article  MathSciNet  MATH  Google Scholar 

  11. Coates, T., Iritani, H., Jiang, Y.: The crepant transformation conjecture for toric complete intersections. Adv. Math. 329, 1002–1087 (2018). arXiv:1410.0024

    Article  MathSciNet  MATH  Google Scholar 

  12. Donovan, W.: Perverse schobers and wall crossing. Int. Math. Res. Not. IMRN. https://doi.org/10.1093/imrn/rnx280. arXiv:1703.00592

  13. Donovan, W., Segal, E.: Mixed braid group actions from deformations of surface singularities. Comm. Math. Phys. 335(1), 497–543 (2014). arXiv:1310.7877

    Article  MathSciNet  MATH  Google Scholar 

  14. Donovan, W., Wemyss, M.: Noncommutative deformations and flops. Duke Math. J. 165(8), 1397–1474 (2016). arXiv:1309.0698

    Article  MathSciNet  MATH  Google Scholar 

  15. Donovan, W., Wemyss, M.: Twists and braids for general 3-fold flops. J. Eur. Math. Soc. (in press). arXiv:1504.05320

  16. Dyckerhoff, T., Kapranov, M., Schechtman, V., Soibelman, Y.: Perverse schobers on surfaces and Fukaya categories with coefficients (in preparation)

  17. Fabel, P.: The mapping class group of a disk with infinitely many holes. J. Knot Theory Ramifications 15(1), 21–29 (2006). arXiv:math/0303042

    Article  MathSciNet  MATH  Google Scholar 

  18. Fan, Y.-W., Hong, H., Lau, S.-C., Yau, S.-T.: Mirror of Atiyah flop in symplectic geometry and stability conditions (2017). arXiv:1706.02942

  19. Gelfand, S., MacPherson, R., Vilonen, K.: Perverse sheaves and quivers. Duke Math. J. 83(3), 621–643 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Halpern-Leistner, D.: The derived category of a GIT quotient. J. Amer. Math. Soc. 28(3), 871–912 (2015). arXiv:1203.0276

    Article  MathSciNet  MATH  Google Scholar 

  21. Halpern-Leistner, D., Sam, S.V.: Combinatorial constructions of derived equivalences (2016). arXiv:1601.02030

  22. Halpern-Leistner, D., Shipman, I.: Autoequivalences of derived categories via geometric invariant theory. Adv. Math. 303, 1264–1299 (2016). arXiv:1303.5531

    Article  MathSciNet  MATH  Google Scholar 

  23. Harder, A., Katzarkov, L.: Perverse sheaves of categories and some applications (2017). arXiv:1708.01181

  24. Huybrechts, D.: Fourier–Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  25. Kapranov, M., Schechtman, V.: Perverse sheaves over real hyperplane arrangements. Ann. Math. 183(2), 619–679 (2016). arXiv:1403.5800

    Article  MathSciNet  MATH  Google Scholar 

  26. Kapranov, M., Schechtman, V.: Perverse schobers (2014). arXiv:1411.2772

  27. Kapranov, M., Schechtman, V.: Perverse sheaves and graphs on surfaces (2016). arXiv:1601.01789

  28. Kashiwara, M.: On the maximally overdetermined system of linear differential equations. I. Publ. Res. Inst. Math. Sci. IMRN 10, 563–579 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kashiwara, M.: The Riemann–Hilbert problem for holonomic systems. Publ. Res. Inst. Math. Sci. IMRN 20(2), 319–365 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Katzarkov, L., Pandit, P., Spaide, T.: Calabi–Yau structures, spherical functors, and shifted symplectic structures (2017). arXiv:1701.07789

  31. Mebkhout, Z.: Une autre équivalence de catégories. Compositio Math. 51(1), 63–88 (1984)

    MathSciNet  MATH  Google Scholar 

  32. Nadler, D.: Mirror symmetry for the Landau–Ginzburg A-model \(M=\mathbb{C}^n\), \(W=z_1 \cdots z_n\) (2016). arXiv:1601.02977

  33. Segal, E.: All autoequivalences are spherical twists. Int. Math. Res. Not. IMRN 2018(10), 3137–3154 (2018). arXiv:1603.06717

    MathSciNet  MATH  Google Scholar 

  34. Toda, Y.: On a certain generalization of spherical twists. Bull. Soc. Math. France 135(1), 119–134 (2007). arXiv:math/0603050

    Article  MathSciNet  MATH  Google Scholar 

  35. Toda, Y.: Stability conditions and crepant small resolutions. Trans. Amer. Math. Soc. 360(11), 6149–6178 (2008). arXiv:math/0512648

    Article  MathSciNet  MATH  Google Scholar 

  36. Toda, Y.: Non-commutative width and Gopakumar–Vafa invariants. Manuscripta Math. 148(3–4), 521–533 (2015). arXiv:1411.1505

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Mikhail Kapranov for inspiring conversations. I thank Alexey Bondal, Yukari Ito, Alastair King, Sven Meinhardt, Ed Segal, and Michael Wemyss for useful discussions, and Jacopo Stoppa and Barbara Fantechi for their hospitality and interest in my work at SISSA, Trieste. I am grateful to an anonymous referee, and to Pierre Schapira, for helpful comments. Finally, I thank the organizers of the 2016 Easter Island workshop on algebraic geometry for the opportunity to attend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will Donovan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and JSPS KAKENHI Grant Number JP16K17561.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donovan, W. Perverse schobers on Riemann surfaces: constructions and examples. European Journal of Mathematics 5, 771–797 (2019). https://doi.org/10.1007/s40879-018-00307-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-018-00307-2

Keywords

Mathematics Subject Classification

Navigation