Skip to main content
Log in

Dynamic Damage Law with Fragmentation Length: Strain-Rate Sensitivity of the Tensile Response

  • Brief Technical Note
  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

A damage law for dynamic failure in brittle solids is proposed in the present note. The new evolution equation is obtained by incorporating the Grady–Glenn–Chudnovsky average fragment size expression as the microstructural length of a two-scale damage model. In this construction, the internal length of the model explicitly depends on the local strain rate and the material parameters. The capacity of the new approach to account for the strain-rate sensitivity of the tensile strength is illustrated by comparison of the predicted material and structural responses with experimental data for concrete and ceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Atiezo KM, Chen W, Dascalu C (2019) Loading rate effects on dynamic failure of quasi-brittle solids: Simulations with a two-scale damage model. Theor Appl Fract Mech 100:269–280

    Article  CAS  Google Scholar 

  2. Daphalapurkar NP, Ramesh KT, Graham-Brady L, Molinari J-F (2011) Predicting variability in the dynamic failure strength of brittle materials considering pre-existing flaws. J Mech Phys Solids 59(2):297–319

    Article  Google Scholar 

  3. Dascalu C (2018) Multiscale modeling of rapid failure in brittle solids: branching instabilities. Mech Mater 199:2765–2778

    Google Scholar 

  4. Dascalu C, Gbetchi K (2019) Dynamic evolution of damage by microcracking with heat dissipation. Int J Solids Struct 174–175:128–144

    Article  Google Scholar 

  5. Drugan WJ (2001) Dynamic fragmentation of brittle materials: analytical mechanics-based models. J Mech Phys Solids 49:1181–1208

    Article  CAS  Google Scholar 

  6. Erzar B (2010) Ecaillage, cratérisation et comportement en traction dynamique de bétons sous impact: approches expérimentales et modélisation. Metz, France PhD thesis

  7. Erzar B, Forquin P (2014) Analysis and modelling of the cohesion strength of concrete at high strain-rates. Int J Solids Struct 51:2559–2574

    Article  Google Scholar 

  8. Galvez Diaz-Rubio F, Rodriguez Perez J, Sanchez Galvez V (2002) The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics. Int J Impact Eng 27:161–177

    Article  Google Scholar 

  9. Glenn LA, Chudnovsky A (1986) Strain-energy effects on dynamic fragmentation. J Appl Phys 59:1379–1380

    Article  CAS  Google Scholar 

  10. Grady DE (1982) Local inertial effects in dynamic fragmentation. J Appl Phys 53:322–325

    Article  Google Scholar 

  11. Grady DE (2010) Length scales and size distributions in dynamic fragmentation. Int J Fract 163:85–99

    Article  Google Scholar 

  12. Hu G, Liu J, Graham-Brady L, Ramesh KT (2015) A 3D mechanistic model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading. J Mech Phys Solids 78:269–297

    Article  Google Scholar 

  13. Keita O, Dascalu C, François B (2014) A two-scale model for dynamic damage evolution. J Mech Phys Solids 64:170–183

    Article  Google Scholar 

  14. Kimberley J, Ramesh KT, Daphalapurkar NP (2013) A scaling law for the dynamic strength of brittle solids. Acta Mater 61(9):3509–3521

    Article  CAS  Google Scholar 

  15. Levy S, Molinari J-F (2010) Dynamic fragmentation of ceramics, signature of defects and scaling of fragment sizes. J Mech Phys Solids 58:12–26

    Article  CAS  Google Scholar 

  16. Najar J (1994) Dynamic tensile fracture phenomena at wave propagation in ceramic bars. J Phys IV 4:C8-647–C8-652

    Google Scholar 

  17. Pham K, Marigo JJ (2013) From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. Cont Mech Thermodyn 25:147–171

    Article  Google Scholar 

  18. Swanson GD (1972) Fracture energies of ceramics. J Am Ceram Soc 55:48–49

    Article  CAS  Google Scholar 

  19. Zhou F, Molinari JF, Ramesh KT (2006) Characteristic fragment size distributions in dynamic fragmentation. Appl Phys Lett 88:2619181–3

    Google Scholar 

  20. Zinszner JL, Erzar B, Forquin P, Buzaud E (2015) Dynamic fragmentation of an alumina ceramic subjected to shockless spalling: An experimental and numerical study. J Mech Phys Solids 85:112–127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dascalu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dascalu, C. Dynamic Damage Law with Fragmentation Length: Strain-Rate Sensitivity of the Tensile Response. J. dynamic behavior mater. 7, 156–160 (2021). https://doi.org/10.1007/s40870-020-00262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-020-00262-8

Keywords

Navigation