Skip to main content
Log in

Ejecta Transport, Breakup and Conversion

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

We report experimental results from an initial study of reactive and nonreactive metal fragments—ejecta—transporting in vacuum, and in reactive and nonreactive gases. We postulate that reactive metal fragments ejected into a reactive gas, such as H \(_2\), will break up into smaller fragments in situations where they are otherwise hydrodynamically stable in a nonreactive gas such as He. To evaluate the hypothesis we machined periodic perturbations onto thin Ce and Zn coupons and then explosively shocked them to eject hot, micron-scale fragments from the perturbations. The ejecta masses were diagnosed with piezoelectric pressure transducers, and their transport in H\(_2\) and He was imaged with visible and infrared (IR) cameras. Because \({\text {Ce}} + {\text {H}}_2 \mapsto {\text {CeH}}_2 + \Delta H\), where \(\Delta H\) is the enthalpy of formation, an observed increase of the relative IR (radiance) temperature \(T_{{R}}\) between the Ce–H\(_2\) and Ce–He gas systems can be used to estimate the amount of Ce that converts to CeH\(_2\). The experiments sought to determine whether dynamic chemical effects should be included in ejecta-transport models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Nominally \(R_{{a}} = h_0/2 = 6\) μm, where \(2h_0 = 24\) μm is peak-to-valley depth of the periodic perturbations.

  2. Santa Barbara Focal Plane, Santa Barbara, CA, model SBFP-191

  3. Size measurements are beyond the scope of this study.

  4. The LDV probes were also 4 mm off center and in line with LN1.

  5. See Sect. IIID in [16] for a clear discussion on the recording of piezoelectric pin signals.

  6. This value of \(C_v^{\text {Ce}}\) at ρ Ce = 6550 mg/cm3 comes from the Los Alamos National Laboratory SESAME 90600 tables.

  7. It would help to have \(T_{{R}}\) for Zn transporting in 2 atm of D2, but we don’t. Therefore we assume that the behavior of Zn transporting in 3 atm of D\(_2\) informs the other situation.

References

  1. Richtmyer RD (1960) Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math 13:297–319

    Article  Google Scholar 

  2. Meshkov EE (1969) Instability in shock-accelerated boundary separating two gasses. Izv Akad Nauk SSSR, Mekh Zhidk Gasa 4(5):151–157

    Google Scholar 

  3. Mikaelian KO (1998) Analytic approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys Rev Lett 80:508–511

    Article  Google Scholar 

  4. Zellner MB, Vogan McNeil W, Gray GT III, Huerta DC, King NSP, Neal GE, Valentine SJ, Payton JR, Rubin J, Stevens GD, Turley WD, Buttler WT (2008) Surface preparation methods to enhance dynamic surface property measurements of shocked metal surfaces. J Appl Phys 103:083521

    Article  Google Scholar 

  5. Durand O, Soulard L (2015) Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations. J Appl Phys 117:165903

    Article  Google Scholar 

  6. Asay JR (1976) Ejection of material from shocked surfaces. Appl Phys Lett 29:284–287

    Article  Google Scholar 

  7. Andriot P, Chapron P, Olive F (1982) Ejection of material from shocked surfaces of tin, tantalum, and lead alloys. AIP Conf Proc 78:505–509

    Google Scholar 

  8. Couch R, Shaw L, Barlett R, Steinmetz L, Behrendt W, Firpo C (1985) Surface properties of shocked lead. J Phys Colloques 46(C5):385–393; U California Radiation Laboratory Tech Report, UCRL-90817

  9. Cheret R, Chapron P, Elias P, Martineau J (1986) Mass ejection from the free surface of shock-loaded metallic samples. In: Gupta YM (ed) Shock waves in condensed matter. Plenum Press, New York, pp 651–654

    Chapter  Google Scholar 

  10. Vogan WS, Anderson WW, Grover M, Hammerberg JE, King NSP, Lamoreaux SK, Macrum G, Morley KB, Rigg PA, Stevens GD, Turley WD, Veeser LR, Buttler WT (2005) Piezoelectric characterization of ejecta from shocked tin surfaces. J Appl Phys 98:113508

    Article  Google Scholar 

  11. Zellner MB, Grover M, Hammerberg JE, Hixson RS, Iverson AJ, Macrum GS, Morley KB, Obst AW, Olson RT, Payton JR, Rigg PA, Routley N, Stevens GD, Turley WD, Veeser L, Buttler WT (2007) Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces. J Appl Phys 102:013522

    Article  Google Scholar 

  12. Zellner MB, Vogan-McNeil W, Hammerberg JE, Hixson RS, Obst AW, Olson RT, Payton JR, Rigg PA, Routley N, Stevens GD, Turley WD, Veeser L, Buttler WT (2008) Probing the underlying physics of ejecta production from shocked Sn samples. J Appl Phys 103:123502

    Article  Google Scholar 

  13. Zellner MB, Dimonte G, Germann TC, Hammerberg JE, Rigg PA, Stevens GD, Turley WD, Buttler WT (2009) Influence of shockwave profile on ejecta. AIP Conf Proc 1195:1047–1050

    Article  Google Scholar 

  14. Zellner MB, Byers M, Hammerberg JE, Germann TC, Dimonte G, Rigg PA, Stevens GD, Turley WD, Buttler WT (2009) Influence of shockwave profile on ejection of micron-scale material from shocked Sn surfaces: an experimental study. In: DYMAT 2009—9th international conference on the mechanical and physical behaviour of materials under dynamic loading, vol. 1, pp. 89–94

  15. Chen Y, Hu H, Tang T, Ren G, Li Q, Wang R, Buttler WT (2012) Experimental study of ejecta from shock melted lead. J Appl Phys 111:053509

    Article  Google Scholar 

  16. Monfared SK, Oró DM, Grover M, Hammerberg JE, La Lone BM, Pack CL, Schauer MM, Stevens GD, Stone JB, Turley WD, Buttler WT (2014) Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection. J Appl Phys 116:063504

    Article  Google Scholar 

  17. McMillan CF (1986) Size measurements of high velocity particle distributions. Proc SPIE 674:289–297

    Article  Google Scholar 

  18. Sorenson DS, Minich RW, Romero JW, Tunnell TW, Malone RM (2002) Ejecta particle size distributions for shock-loaded Sn and Al metals. J Appl Phys 92:5830–5836

    Article  Google Scholar 

  19. Ogorodnikov VA, Mikhaĭlov AL, Burtsev VV, Lobastov SA, Erunov SV, Romanov AV, Rudnev AV, Kulakov EV, Bazarov YuB, Glushikhin VV, Kalashnik IA, Tsyganov VA, Tkachenko BI (2009) Detecting the ejection of particles from the free surface of a shock-loaded sample. J Exp Theor Phys 109:530–535

    Article  Google Scholar 

  20. Monfared SK, Buttler WT, Frayer DK, Grover M, La Lone BM, Stevens GD, Stone JB, Turley WD, Schauer MM (2015) Ejected particle size measurement using Mie scattering in high explosive driven shockwave experiments. J Appl Phys 117:223105

    Article  Google Scholar 

  21. Schauer MM, Buttler WT, Frayer DK, Grover M, La Lone BM, Monfared SK, Sorenson DS, Stevens GD, Stone JB, Turley WD (2016) Ejected particle size distributions from shocked metal surfaces. (Submitted to J Dynamic Behavior Mater)

  22. Oró DM, Hammerberg JE, Buttler WT, Mariam FG, Morris C, Rousculp C, Stone JB (2012) A class of ejecta transport test problems. AIP Conf Proc 1426:1351–1354

    Article  Google Scholar 

  23. Buttler WT, Oró DM, Preston DL, Mikaelian KO, Cherne FJ, Hixson RS, Mariam FG, Morris C, Stone JB, Terrones G, Tupa D (2012) The study of high-speed surface dynamics using a pulsed proton beam. AIP Conf Proc 1426:999–1002

    Article  Google Scholar 

  24. Georgievskaya AB, Raevsky VA (2012) Estimation of the spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shockwave effect. AIP Conf Proc 1426:1007–1010

    Article  Google Scholar 

  25. Buttler WT, Oró DM, Preston DL, Mikaelian KO, Cherne FJ, Hixson RS, Mariam FG, Morris C, Stone JB, Terrones G, Tupa D (2012) Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum. J Fluid Mech 703:60–84

    Article  Google Scholar 

  26. Dimonte G, Terrones G, Cherne FJ, Ramaprabhu P (2013) Ejecta source model based on the nonlinear Richtmyer–Meshkov instability. J Appl Phys 113:024905

    Article  Google Scholar 

  27. Mikhailov AL, Ogorodnikov VA, Sasik VS, Raevskii VA, Lebedev AI, Zotov DE, Erunov Syrunin MA, Sadunov VD, Nevmerzhitskii NV, Lobastov SA, Burtsev VV, Mishanov AV, Kulakov EV, Satarova AV, Georgievskaya AB, Knyazev VN, Kleshchevnikov OA, Antipov MV, Glushikhin VV, Yurtov IV, Utenkov AA, Senkovskii ED, Abakumov SA, Presnyakov DV, Kalashnik IA, Panov KN, Arinin VA, Tkachenko BI, Filyaev VN, Chapaev AV, Andramanov AV, Lebedeva MO, Igonin VV (2014) Experimental-calculation simulation of the ejection of particles from a shock-loaded surface. J Exp Theo Phys 118:785–797

    Article  Google Scholar 

  28. Cherne FJ, Hammerberg JE, Andrews MJ, Karkhanis V, Ramaprabhu P (2015) On shock driven jetting of liquid from non-sinusoidal surfaces into vacuum. J Appl Phys 118:185901

    Article  Google Scholar 

  29. Buttler WT (2015) Ejecta in multiphase flows. Los Alamos National Laboratory Technical Report LA-UR-15-22203

  30. Schwarzkopf J, Balachandar S, Buttler W (2016) Compressible multiphase flow. Multiphase Flow Handbook, Second Edition, Boca Raton: Taylor & Francis, CRC Press

  31. Grieves B (2007) 2D direct numerical simulation of ejecta production. In: Legrand M, Vandenboomgaerde M (eds.) Proceedings of 10th Int Workshop Physics Compressible Turbulent Mixing, pp. 95–98. Commissariat à l’Energie Atomique

  32. Fung J, Harrison AK, Chitanvis S, Margulies J (2013) Ejecta source and transport model in the FLAG hydrocode. Comput Fluids 83:177–186

    Article  Google Scholar 

  33. Liu Y, Grieves B (2014) Ejecta production and transport from a shocked Sn coupon. J Fluids Eng 136:091202

    Article  Google Scholar 

  34. O’Rourke PJ, Amsden AA (1987) The TAB method for numerical calculation of spray droplet breakup. Los Alamos National Laboratory Technical Report LA-UR-87-2105

  35. Oweis GF, Ceccio SL, Matsumoto Y, Tropea C, Roisman IV, Tsuji Y, Lyczkowski R, Troutt TR, Eaton JK, Mashayek F (2006) Multiphase interactions. In: Crowe CT (ed) Multiphase flow handbook. CRC Press, Boca Raton

    Google Scholar 

  36. Buttler WT, Oró DM, Mariam FG, Saunders A, Andrews MJ, Cherne FJ, Hammerberg JE, Hixson RS, Morris C, Olson RT, Preston DL, Stone JB, Tupa D, Vogan-McNeil W (2014) Explosively driven two-shockwave tools with applications. J Phys 500:112014

    Google Scholar 

  37. Buttler WT, Oró DM, Olson RT, Cherne FJ, Hammerberg JE, Hixson RS, Monfared SK, Pack CL, Rigg PA, Stone JB, Terrones G (2014) Second shock ejecta measurements with an explosively driven two-shockwave drive. J Appl Phys 116:103519

    Article  Google Scholar 

  38. Korst WL, Warf JC (1966) Rare earth-hydrogen systems. I. Structural and thermodyanmic properties. Inorg Chem 5:1719–1726

    Article  Google Scholar 

  39. Young DA (1991) Phase diagrams of elements. University of California Press, Berkeley & Los Angeles

    Google Scholar 

  40. Mueller WM, Blackledge JP, Libowitz GG (1968) Metal hydrides. Academic Press, New York

    Google Scholar 

  41. See http://www.dynasen.com. Dynasen, Inc., Goleta

  42. Cummins H, Knable N, Gampel L, Yeh Y (1963) Frequency shifts in light diffracted by ultrasonic waves in liquid media. Appl Phys Lett 2:62–64

    Article  Google Scholar 

  43. Cummins HZ, Knable N, Yeh Y (1963) Spurious harmonic generation in optical heterodyning. Appl Opt 2:823–825

    Article  Google Scholar 

  44. Yeh Y, Cummins HZ (1964) Localized fluid flow measurements with an HeNe laser spectrometer. App Phys Lett 4:176–178

    Article  Google Scholar 

  45. Forman JW Jr, George EW, Lewis RD (1965) Measurement of localized fluid flow velocities in gases with a laser Doppler flowmeter. Appl Phys Lett 7:77–78

    Article  Google Scholar 

  46. Buttler WT, Lamoreaux SK, Omenetto FG, Torgerson JR (2004) Optical velocimetry. https://arxiv.org/abs/physics/0409073

  47. Strand OT, Goosman DR, Martinez C, Whitworth TL (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77:083108

    Article  Google Scholar 

  48. Grønvold F, Stølen S (2003) Heat capacity of solid zinc from 298.15 to 692.68 K and of liquid zinc from 692.68 to 940 K: thermodynamic function values. Thermochim Acta 395:127–131

    Article  Google Scholar 

  49. Spedding FH, McKeown JJ, Daane AH (1960) The high temperature thermodynamic functions of cerium, neodymium and samarium. J Phys Chem 64:189–294

    Article  Google Scholar 

  50. Bartky CD, Bauer E (1966) Predicting the emittance of a homogeneous plume containing alumina particles. J Spacecr Rocket 3:1523–1527

    Article  Google Scholar 

  51. Adams JM (1967) A determination of the emissive properties of a cloud of molten alumina particles. J Quant Spectrosc Radiat Transf 7:273–277

    Article  Google Scholar 

  52. Adams JM (1968) On the determination of spectral emissivity in an optically thick particle cloud. J Quant Spectrosc Radiat Transfer 8:631–639

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the U.S. Department of Energy through the LANL/ LDRD Program. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. T. Buttler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buttler, W.T., Lamoreaux, S.K., Schulze, R.K. et al. Ejecta Transport, Breakup and Conversion. J. dynamic behavior mater. 3, 334–345 (2017). https://doi.org/10.1007/s40870-017-0114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-017-0114-6

Keywords

Navigation