Skip to main content
Log in

Explicit examples in ergodic optimization

  • Original Article
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Denote by T the transformation \(T(x)= 2 \,x\) (mod 1). Given a potential \(A:S^1 \rightarrow {\mathbb{R}}\) we are interested in exhibiting in several examples the explicit expression for the calibrated subaction \(V: S^1 \rightarrow {\mathbb{R}}\) for A. The action of the 1/2 iterative procedure \({\mathcal{G}}\), acting on continuous functions \(f: S^1 \rightarrow {\mathbb{R}}\), was analyzed in a companion paper. Given an initial condition \(f_0\), the sequence, \({\mathcal{G}}^n(f_0)\) will converge to a subaction. The sharp numerical evidence obtained from this iteration allow us to guess explicit expressions for the subaction in several worked examples: among them for \(A(x) = \sin ^2 ( 2 \pi x)\) and \(A(x) = \sin ( 2 \pi x)\). Here, among other things, we present piecewise analytical expressions for several calibrated subactions. The iterative procedure can also be applied to the estimation of the joint spectral radius of matrices. We also analyze the iteration of \({\mathcal{G}}\) when the subaction is not unique. Moreover, we briefly present the version of the 1/2 iterative procedure for the estimation of the main eigenfunction of the Ruelle operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Anagnostopoulou, V., Daz-Ordaz Avila, K., Jenkinson, O., Richard, C.: Sturmian maximizing measures for the piecewise-linear cosine family. Bull. Braz. Math. Soc. (N.S.) 43, 285302 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Bahsoun, W., Galatolo, S., Nisoli, I., Niu, X.: Rigorous approximation of diffusion coefficients for expanding maps. J. Stat. Phys. 163(6), 1486–1503 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Baraviera, A., Lopes, A.O., Thieullen, P.: A large deviation principle for Gibbs states of Hölder potentials: the zero temperature case. Stoch. Dyn. 6, 77–96 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Baraviera, A., Leplaideur, R., Lopes, A.O.: Ergodic Optimization, Zero Temperature and the Max-Plus algebra, \(23^{\text{ o }}\) Coloquio Brasileiro de Matematica. IMPA, Rio de Janeiro (2013)

    MATH  Google Scholar 

  5. Baraviera, A., Leplaideur, R., Lopes, A.O.: Selection of ground states in the zero temperature limit for a one-parameter family of potentials. SIAM J. Appl. Dyn. Syst. 11(1), 243–260 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Baraviera, A.T., Lopes, A.O., Mengue, J.: On the selection of subaction and measure for a subclass of potentials defined by P. Walters. Ergod. Theory Dyn. Syst. 33(05), 1338–1362 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Baraviera, A.T., Cioletti, L.M., Lopes, A.O., Mohr, J., Souza, R.R.: On the general one-dimensional XY Model: positive and zero temperature, selection and non-selection. Rev. Math. Phys. 23(10), 1063–1113 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Bissacot, R., Garibaldi, E., Thieullen, P.: Zero-temperature phase diagram for double-well type potentials in the summable variation class. ETDS 38(3), 863–885 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Bousch, T.: Le poisson n’a pas d’aretes. Ann. Inst. Henri Poincare Prob. Stat. 36, 489–508 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Bousch, T.: La condition de Walters. Ann. Sci. ENS Ser. 4 34(2), 287–311 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Bousch, T., Jenkinson, O.: Cohomology classes of dynamically nonnegative Ck functions. Invent. Math. 148, 207–217 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Bremont, J.: Gibbs measures at temperature zero. Nonlinearity 16(2), 419–426 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Chou, W., Griffiths, R.: Ground states of one-dimensional systems using effective potentials. Phys. Rev. B 34(9), 6219–6234 (1986)

    Google Scholar 

  14. Contreras, G., Lopes, A.O., Thieullen, Ph: Lyapunov minimizing measures for expanding maps of the circle. Ergod. Theory Dyn. Syst. 21, 1379–1409 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Contreras, G.: Ground states are generically a periodic orbit. Invent. Math. 205(2), 383–412 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Contreras, G., Lopes, A.O., Oliveira, E.: Ergodic Transport Theory, periodic maximizing probabilities and the twist condition. In: Modeling, Optimization, Dynamics and Bioeconomy I, pp. 183–219. Springer (2014)

  17. Contreras, G., Iturriaga, R.: Global minimizers of autonomous Lagrangians, 22 Coloquio Brasileiro de Matematica, IMPA (1999)

  18. Conze, J.P., Guivarch, Y.: Croissance des sommes ergodiques et principe variationnel. Manuscript, Circa (1993)

  19. Dotson, W.G.: On the Mann iterative process. Trans. Am. Math. Soc. 149(6573), 65–73 (1970)

    MathSciNet  MATH  Google Scholar 

  20. Fathi, A.: Weak KAM theorem in Lagrangian Dynamics. Lecture Notes, Pisa (2005)

  21. Ferreira, H.H., Lopes, A.O., Oliveira, E.R.: An iterative process for approximating subactions. In: Modeling, Dynamics, Optimization and Bioeconomics IV. Springer

  22. Galatolo, S., Pollicott, M.: Controlling the statistical properties of expanding maps. Nonlinearity 30(7), 2737–2751 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Galatolo, S., Nisoli, I., Saussol, B.: An elementary way to rigorously estimate convergence to equilibrium and escape rates. J. Comput. Dyn. 2(1), 5164 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Garibaldi, E., Lopes, A.O.: On the Aubry–Mather theory for symbolic dynamics. Ergod. Theory Dyn Syst. 28(3), 791–815 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Garibaldi, E., Lopes, A.O., Thieullen, P.: On calibrated and separating sub-actions. Bull. Bras. Math. Soc. 40(4), 577–602 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Garibaldi, E.: Ergodic Optimization in the Expanding Case. Springer, Berlin (2017)

    MATH  Google Scholar 

  27. Garibaldi, E., Thieullen, P.: Description of some ground states by Puiseux technics. J. Stat. Phys. 146(1), 125180 (2012)

    MATH  Google Scholar 

  28. Goldstein, A.: Constructive Real Analysis. Harper International, Buffalo (1967)

    MATH  Google Scholar 

  29. Gurevich, B.M., Savchenko, S.V.: Thermodynamic formalism for symbolic Markov chains with a countable number of states. Russ. Math. Surv. 53(2), 245–344 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Hunt, B.R., Ott, E.: Optimal periodic orbits of chaotic systems. Phys. Rev. Lett. 76, 2254–2257 (1996)

    Google Scholar 

  31. Hunt, B.R., Ott, E.: Optimal periodic orbits of chaotic systems occur at low period. Phys. Rev. E 54, 328–337 (1996)

    Google Scholar 

  32. Ishikawa, S.: Fixed points and iteration of a nonexpansive mapping in a banach space. Proc. Am. Math. Soc. 59(1), 65–71 (1976)

    MathSciNet  MATH  Google Scholar 

  33. Iturriaga, R., Lopes, A.O., Mengue, J.: Selection of calibrated subaction when temperature goes to zero in the discounted problem. Discrete Contin. Dyn. Syst. Ser. A 38(10), 4997–5010 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Jenkinson, O.: Ergodic optimization. Discrete Contin. Dyn. Syst. Ser. A 15, 197–224 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Jenkinson, O.: Ergodic optimization in dynamical systems. Ergdo. Theory Dyn. Syst. 39, 2593–2618 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Jenkinson, O.: A partial order on x2-invariant measures. Math. Res. Lett. 15(5), 893–900 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Jenkinson, O., Pollicott, M.: Joint spectral radius, Sturmian measures, and the finiteness conjecture. Ergod. Theory Dyn. Syst. 38, 3062–3100 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Jenkinson, O., Pollicott, M., Vytnova, P.: Rigorous computation of diffusion coefficients for expanding maps. J. Stat. Phys. 170(2), 221–253 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Leplaideur, R.: A dynamical proof for the convergence of Gibbs measures at temperature zero. Nonlinearity 18(6), 2847–2880 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Leplaideur, R.: Flatness is a criterion for selection of maximizing measures. J. Stat. Phys. 147(4), 728757 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Liverani, C.: Rigorous numerical investigation of the statistical properties of piecewise expanding maps. Nonlinearity 14, 463–490 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Lopes, A.O., Mengue, J.K., Mohr, J., Souza, R.R.: Entropy and variational principle for one-dimensional lattice systems with a general a-priori probability: positive and zero temperature. Ergod. Theory Dyn. Syst. 35(6), 1925–1961 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Lopes, A.O., Oliveira, E.R., Smania, D.: Ergodic transport theory and piecewise analytic subactions for analytic dynamics. Bull. Braz. Math. Soc. 43(3), 467–512 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Lopes, A.O., Oliveira, E., Thieullen, P.: The Dual Potential, the involution kernel and transport in ergodic optimization. In: Dynamics, Games and Science, pp. 357–398. Springer (2015)

  45. Lopes, A.O., Mengue, J.: Selection of measure and a large deviation principle for the general one-dimensional XY model. Dyn. Syst. Int. J. 29(1), 24–39 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Lorentzen, L.: Compositions of contractions. J. Comput. Appl. Math. 32(1–2), 169–178 (1990)

    MathSciNet  MATH  Google Scholar 

  47. Mañé, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9, 273–310 (1996)

    MathSciNet  MATH  Google Scholar 

  48. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    MathSciNet  MATH  Google Scholar 

  49. Mohr, J.: Product type potential on the \(XY\) model: selection of maximizing probability and a large deviation principle. arXiv (2018)

  50. Morris, I.: A sufficient condition for the subordination principle in ergodic optimization. Bull. Lond. Math. Soc. 39, 214–220 (2007)

    MathSciNet  MATH  Google Scholar 

  51. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187(188), 1–268 (1990)

    MathSciNet  MATH  Google Scholar 

  52. Savchenko, S.V.: Cohomological inequalities for finite topological Markov chains. Funct. Anal. Appl. 33, 236–238 (1999)

    MathSciNet  MATH  Google Scholar 

  53. Senter, H., Dotson, W.: Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 44, 375–380 (1974)

    MathSciNet  MATH  Google Scholar 

  54. Tal, F.A., Zanata, S.A.: Maximizing measures for endomorphisms of the circle. Nonlinearity 21, 2347 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur O. Lopes.

Additional information

Communicated by Philip Boyland.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 The subaction equation in the case \(A(x)=\sin ^2(2 \pi x)\)

In this section we consider the case \(A(x)=\sin ^2(2 \pi x)\) which was initially discussed on Sect. 5. We want to give more details on the proofs. We want to show first that \(V(x)=\sup \,\{\,V_1(x),V_2(x)\,\}\) is a calibrated subaction for A, when \(V_1\) and \(V_2\) are described by (24). Remember that for all x we have \(V_1(x)= V_2(1-x).\) Later we will present the power expansion for \(V_2\) which will show can be described by (25).

Lemma 12

If \(V_2(x)=\lim _{n \rightarrow +\infty }V_2^{n*}(x)\), then \(V_2(x)=\sum _{i=0}^{N}\left( F\circ \eta ^i(x)-2{\hat{m}}(A)\right) + \epsilon _N(x)\), where \(|\epsilon _N(x) | \le 2\pi \sum _{i=N}^{+\infty }\frac{1}{4^i}= \frac{2 \pi }{3 \cdot 4^{N-1}} \le \frac{2}{3 \cdot 4^{N-2}}.\)

Proof

We just have to use the property that \(\sin ^2\) has Lipchitz constant equal 2. \(\square\)

We want to show that \(V_2\) indeed satisfies (22).

Lemma 13

If \(V_2(x)=\lim _{n \rightarrow +\infty }V_2^{n*}(x)\), then

$$\begin{aligned} V_2(x)=V_2(\eta (x))+A\left( \frac{x}{2}\right) + A\left( \frac{x}{4}+\frac{1}{2}\right) -2\,{\hat{m}}(A). \end{aligned}$$

Proof

Denote \(H(x)=A\left( \frac{x}{2}\right) + A\left( \frac{x}{4}+\frac{1}{2}\right) -2\,{\hat{m}}(A)\). Then, \(V_2(x)=\sum _{i=0}^{+\infty }H(\eta ^i(x))\) and \(V_2(\eta (x))= \sum _{i=1}^{+\infty }H(\eta ^i(x)).\) Therefore, \(V_2(\eta (x))=\sum _{i=0}^{+\infty }(H(\eta ^i(x)) -H(x).\) From this follows \(V_2(\eta (x))=V_2(x)- H(x) ,\) and, finally \(V_2(x)=V_2(\eta (x))+A(\frac{x}{2})+ A(\frac{x}{4}+\frac{1}{2})-2{\hat{m}}(A)\). \(\square\)

Lemma 14

If \(V_2(x)=\lim _{n \rightarrow +\infty }V_2^{n*}(x)\) and \({\hat{m}}(A)=\frac{A(1/3)+A(2/3)}{2}\), then the function \(V_1(x)=V_2((x+1)/2)+A((x+1)/2)-{\hat{m}}(A)\) satisfies \(V_1(x/2)+A(x/2)=V_2(x)+{\hat{m}}(A).\)

Proof

From the relation between \(V_1\) and \(V_2\) we have \(V_2((x+1)/2)+A((x+1)/2)=V_1(x)+{\hat{m}}(A).\) Taking composition with \(\tau _1(x)=x/2\) we get

$$\begin{aligned} V_1(x/2)+A(x/2)= & {} V_2(x/4 + 1/2) +A(x/4 +1/2) + A(x/2) -{\hat{m}}(A) \nonumber \\= & {} V_2(\eta (x))+A(x/2) +A(x/4 +1/2) -{\hat{m}}(A). \end{aligned}$$
(41)

From Lemma 13 we obtain \(V_2(\eta (x))-V_2(x)=2{\hat{m}}(A)-(A(x/2) +A(x/4 +1/2)),\) therefore, adding and subtrating \(V_2(x)\) in (41) we have

$$\begin{aligned} V_1(x/2)+A(x/2)= & {} V_2(\eta (x))-V_2(x)+V_2(x)+A(x/2) +A(x/4 +1/2) -{\hat{m}}(A)\\ {}= & {} 2{\hat{m}}(A)-(A(x/2)+A(x/4+1/2))+V_2(x)+A(x/2) +A(x/4 +1/2) -{\hat{m}}(A). \end{aligned}$$

Finally, \(V_1(x/2)+A(x/2)=V_2(x)+{\hat{m}}(A).\) \(\square\)

Now we need some differentiability results for \(V_1\) e \(V_2\).

Proposition 15

\(V_2(x)\) is differentiable in [0, 1] and \(V_2'(x)=\) \(\sum _{i=0}^{+\infty } 2 \pi (\eta ^i)'(x)\left( \sin \left( \pi \eta ^i(x) \right) \cos (\pi \eta ^i (x)) +\frac{1}{2}\sin \left( \frac{\pi \eta ^i(x)}{2} \right) \cos \left( \frac{\pi \eta ^i (x)}{2} \right) \right) .\)

We leave the proof for the reader.

From the last proposition we get

$$\begin{aligned} V_2^{\prime }(x)=\sum _{i=0}^{+\infty } 2 \pi \frac{1}{4^i}\left( \sin \left( \pi \eta ^i(x) \right) \cos (\pi \eta ^i (x)) +\frac{1}{2}\sin \left( \frac{\pi \eta ^i(x)}{2} \right) \cos \left( \frac{\pi \eta ^i (x)}{2} \right) \right) . \end{aligned}$$

Lemma 16

\(V_2'(x)=\varphi _N(x)+ \xi _N(x)\), where \(|\xi _N(x)|\le 3\pi \sum _{i=N}^{+\infty } |\frac{1}{4^i}|= \frac{\pi }{4^{N-1}}\), \(\varphi _N(x)=\sum _{i=0}^{N} 2 \pi \frac{1}{4^i}\left( \sin \left( \pi \eta ^i(x) \right) \cos (\pi \eta ^i (x)) +\frac{1}{2}\sin \left( \frac{\pi \eta ^i(x)}{2} \right) \cos \left( \frac{\pi \eta ^i (x)}{2} \right) \right) .\)

We leave the proof for the reader.

\(I_E\) denotes the indicator function of the interval E.

Theorem 17

Taking \(V_2(x)=\lim _{n \rightarrow +\infty }V_2^{n*}(x)\) and \(V_1(x)=V_2((x+1)/2)+A((x+1)/2)-{\hat{m}}(A)\), we get that \(V(x)=V_1(x)I_{[0,1/2)}(x)+ V_2(x) I_{[1/2,1]}(x).\) is a calibrated subaction for A, when \({\hat{m}}(A)=\frac{A(1/3)+A(2/3)}{2}=m(A)\).

Proof

We have to show that \(\max _{T(y)=x}[A(y)+V(y)]=\max \{V_1(x/2)+A(x/2),V_2((x+1)/2) + A((x+1)/2) \}.\) As \(V_1(u/2)+A(u/2)=V_2(u)+{\hat{m}}(A),\) and, \(V_1(x)=V_2(1-x)\), then, we have to show that

$$\begin{aligned} \max _{T(y)=x}[A(y)+V(y)]= \max \{V_2(x)+{\hat{m}}(A), V_2(1-x)+{\hat{m}}(A) \} \end{aligned}$$
(42)

We will show first that if \(u \in [0,1/2]\), then

$$\begin{aligned} V_2(u)+{\hat{m}}(A) \le V_2(1-u)+{\hat{m}}(A)=V_1(u)+{\hat{m}}(A) . \end{aligned}$$

Denote \(\gamma (u)=V_2(u)-V_2(1-u)\). By Lemma 16 we get

$$\begin{aligned} \gamma '(u)= & {} V_2'(u)+V_2'(1-u)= \varphi _N(1-u)+\varphi _N(u) + (\xi _N(1-u)+\xi (u))\\\ge & {} \varphi _N(1-u)+\varphi _N(u) - 2\frac{\pi }{4^{N-1}}. \end{aligned}$$

Taking \(N=4\) it is easy to se that if \(u \in [0.1,0.9]\) then \(\gamma '(u)> 0\). The function \(\gamma\) is monotone increasing from 0.1 to 0.9 and \(\gamma (1/2)=0\). Then \(\gamma\) is negative on the interval [0.1, 0.5]. A similar argument can also handle the case \(x\in [0,0.1]\). We use Lemma 12, the fact that \(\gamma (u)=V_2(u)-V_2(1-u)\) and the control of the error \(|\epsilon _N(x) |\). Then, finally we get that \(\gamma\) is also negative in [0, 0.1] and is positive for \(x\in [0.9,1]\). From the above we get \(\max _{T(y)=u}[A(y)+V(y)]= V_2(1-u)+{\hat{m}}(A),\quad u \in [0,1/2]\) and \(\max _{T(y)=u}[A(y)+V(y)]= V_2(u)+{\hat{m}}(A),\quad u \in [0,1/2].\) Therefore, for all \(x \in [0,1]\) we get \(\max _{T(y)=x}[A(y)+V(y)]= V(x)+ {\hat{m}}(A)\) Then, V is a calibrated subaction. \(\square\)

Now we will express \(V_2\) in power series. Our final result will be given by expression (46). Using the property \(\sin ^2(x)=\frac{1-\cos (2\pi x)}{2}\), we get

$$\begin{aligned} {V_2(x+2/3)=\frac{1}{2} \sum\limits _{i=0}^{+\infty }\left( \sin \left( \frac{4\pi }{3}\right) \sin \left( 2\pi \left( -\frac{1}{2}\right) ^ix\right) - \cos \left( \frac{4\pi }{3}\right) (\,\cos \left( 2\pi \left( -\frac{1}{2}\right) ^i\,x\,-1\,)\right) \right) }. \end{aligned}$$

Now, define

$$\begin{aligned} {M(x)=\frac{\sin (4\pi /3)}{2}\sum\limits_{i=0}^{+\infty }(\,\sin (2\pi (-1/2)^ix)\,-\, \sin (0)\,)} \end{aligned}$$

and

$$\begin{aligned} {}^{Q(x)= \frac{-\cos (4\pi /3)}{2}\sum _{i=0}^{+\infty }(\cos (2\pi (-1/2)^i\,x\,-\, \cos (0)).} \end{aligned}$$

We will express later \(V_2\) as \(V_2(x)=Q(x-2/3)+M(x-2/3).\)

Lemma 18

M and Q are uniformly convergent in each interval \([-a,a]\).

Proof

As the function \(\sin\) is Lipschitz, then, there is a constant C, such that,

$$\begin{aligned} |\sin (x)-\sin (y)|\le C|x-y| \le 2aC, \end{aligned}$$

and \(\sum _{i=0}^{+\infty }\left| \sin \left( 2\pi \left( -\frac{1}{2} \right) ^i x\right) \right| \le \sum _{i=0}^{+\infty }2\,a\,C\,\left| 2\pi \left( -\frac{1}{2} \right) ^i\right| \le +\infty .\) For Q we use an analogous argument. \(\square\)

As \(\cos (x)=\sum _{k=0}^{+\infty }\frac{(-1)^{k}x^{2k}}{(2k)!}\) one can write Q as

$$\begin{aligned} {Q(x)=\frac{-\cos (4\pi /3)}{2} \sum _{k=1}^{+\infty } \sum _{i=0}^{+\infty }\left( \frac{(-1)^k(2\pi x)^{2k}}{2^{2ik}(2k)!}\right) .} \end{aligned}$$
(43)

Finally, we get \(Q(x)=\frac{-\cos (4\pi /3)}{2}\sum _{k=1}^{+\infty }\frac{(-1)^k(2\pi x)^{2k}}{(2k)!}\frac{2^{2k}}{2^{2k}-1}.\) Proceeding in analogous way we get \(M(x)=\frac{\sin (4\pi /3)}{2}\sum _{k=0}^{+\infty }\frac{(-1)^k(2\pi x)^{2k+1}}{(2k+1)!}\frac{2^{2k+1}}{2^{2k+1}+1}.\)

Proposition 19

For a fixed \(0<\varepsilon <1\), if \(x \in [-1+\varepsilon ,1-\varepsilon ]\), we can exchange the order in the sum of (43) and we get

$$\begin{aligned} {Q(x)=\frac{-\cos (4\pi /3)}{2}\sum _{k=1}^{+\infty }\frac{(-1)^k(2\pi x)^{2k}}{(2k)!}\frac{2^{2k}}{2^{2k}-1}.} \end{aligned}$$

Proof

Note that if \(|x|<1\) there exists a constant K (the coefficients on the power series of \(\cos\) are decreasing) such that

$$\begin{aligned}\left| \sum _{k=1}^{+\infty }\frac{(-1)^k (2\pi x)^{2k}}{2^{2ik}(2k)!}\right| &\le \sum _{k=1}^{+\infty }\left| \frac{(2\pi x)^{2k}}{2^{2ik}(2k)!}\right| \le \frac{1}{2^i}\sum _{k=1}^{+ \infty }\left( K\, x^{2k} \right) \\&=\frac{K}{2^i} \left( \frac{x^2}{1-x^2}\right) \le \frac{K}{2^i}\left( \frac{|1-\varepsilon |^2}{1-|1-\varepsilon |^2}\right) . \end{aligned}$$

We can exchange the order on the double sum: \(\forall x \in [-1+\varepsilon ,1-\varepsilon ]\),

$$\begin{aligned} {\sum _{i=0}^{+ \infty }\sum _{k=1}^{+\infty }\left| \frac{(-1)^k (2\pi x)^{2k}}{2^{2ik}(2k)!}\right| \le \sum _{i=0}^{+ \infty }\frac{K}{2^i} \left( \frac{x^2}{1-x^2} \right) \le 2K\,\left( \frac{|1-\varepsilon |^2}{1-|1-\varepsilon |^2}\right) < +\infty .} \end{aligned}$$

Note that \((x-2/3)\in [-2/3,1/3]\). Then,

$$\begin{aligned} {Q(x-2/3)=\frac{-\cos (4\pi /3)}{2}\sum _{k=1}^{+\infty }\frac{(-1)^k(2\pi (x-2/3))^{2k}}{(2k)!}\frac{2^{2k}}{2^{2k}-1}.} \end{aligned}$$
(44)

In the same way we get

$$\begin{aligned} {M(x-2/3)=\frac{\sin (4\pi /3)}{2}\sum _{k=0}^{+\infty }\frac{(-1)^k(2\pi (x-2/3))^{2k+1}}{(2k+1)!}\frac{2^{2k+1}}{2^{2k+1}+1}.} \end{aligned}$$
(45)

\(\square\)

As \(V_2(x+2/3)= M(x) + Q(x)\), then, \(V_2(x)=Q(x-2/3)+M(x-2/3).\) Finally, from (44) and (45) the power series expression of \(V_2\) around 2/3 is given by

$$\begin{aligned}V_2(x)&= \frac{\sin (4\pi /3)}{2}\sum _{k=0}^{+\infty }\frac{(-1)^k(2\pi \left( x- \frac{2}{3} \right) )^{2k+1}}{(2k+1)!} \frac{2^{2k+1}}{2^{2k+1}+1} \nonumber \\&\quad -\frac{\cos (4\pi /3)}{2}\sum _{k=1}^{+\infty }\frac{(-1)^k(2\pi \left( x- \frac{2}{3} \right) )^{2k}}{(2k)!}\frac{2^{2k}}{2^{2k}-1} \end{aligned}$$
(46)

We can express the power series of \(V_1\) around 1/3 from \(V_1(x)=V_2(1-x)\).

1.2 The involution kernel for a map with a indifferent fixed point

In this section, we show some results claimed on Sect. 3.

Consider \(f:[0,1]\rightarrow [0,1]\), where

$$\begin{aligned} \left\{ \begin{array}{ll} f(y)= \frac{y}{1-y},&{} {\text{if}},\; 0\le y \le \frac{1}{2},\\ f(y)= 2- \frac{1}{y},&{} {\text{if}},\; \frac{1}{2}< y\le 1,\\ \end{array} \right. \end{aligned}$$

and the potential \(A(y) = \log f '(y)\), which is given by the expression

$$\begin{aligned} \left\{ \begin{array}{ll} f'(y)= \frac{1}{(1-y)^2}, &{} {\text{if}},\; 0\le y \le \frac{1}{2},\\ f'(y)= \frac{1}{y^2},&{} {\text{if}},\; \frac{1}{2}< y\le 1.\\ \end{array} \right. \end{aligned}$$

We want to derive the involution kernel for A. We claim the involution kernel for such A is \(W(y,x) = 2 \log (x + y - 2 xy).\) We will show that

$$\begin{aligned} A(F^{-1}(y,x))+ W( F^{-1}(y,x) )- W(y,x) =A(y). \end{aligned}$$

We denote \(R_0\subset [0,1]^2\) the cylinder \(0< y< 1/2\), and \(R_1\subset [0,1]^2\) the cylinder \(1/2< y< 1\). Restricted to \(R_0\), the inverse \(F^{-1}(y,x)\) is given by \(F^{-1}(x,y) =(\frac{y}{ 1-y}, \frac{x}{1+ x}).\) From this we get, for \((y,x) \in R_0\), \(A(F^{-1}(y,x))= \log (1+x)^{-2}.\) Moreover, in this case, for (yx) in the cylinder \(R_0\),

$$\begin{aligned} { W( F^{-1}(y,x) )= 2 \,\log \left( \frac{y}{1-y} + \frac{x}{1+x} - 2\,\frac{\,y\, \,\,x}{(1-y)\,\, (1+x)}\,\right) = \, 2 \log \left( \frac{x + y - 2 x\, y }{(1-y)\,\, (1+x)} \right) .} \end{aligned}$$

Therefore, for \(0<y<1/2\), we have

$$\begin{aligned}&{A(F^{-1}(y,x))+ W( F^{-1}(y,x) )- W(y,x) } \\&={\log (\, (1+x)^{-2}\, \frac{( x+y - 2 x\, y)^{-2} }{(1-y)^{-2} \, (1 + x)^{-2}} \, \frac{1}{ ( x+y - 2 x\, y)^{-2} } \,)= 2\, \log (1-y)= A(y).} \end{aligned}$$

Now we have to consider the cylinder \(R_1\), where \(1/2< y<1\). In this case, \(F^{-1}(y,x)= ( 2- \frac{1}{y} , \frac{1}{2-x}).\) Therefore, \(F^{-1}(y,x)= \, 2 \, \log (2-x),\) and,

$$\begin{aligned} W( F^{-1}(y,x) )&=2\, \log (\, \frac{2 y -1}{y} \,-\, \frac{1}{2-x} \, + \, 2 \frac{(2 \, y -1)}{y \, (2-x)}\,) \\&= 2\, \log ( \, \frac{(2 y-1)\, (2-x) + y - 2\, (2y-1)}{y \, (2-x)} \,)\,=\, 2\, \log ( \,\frac{x+y - 2\, x\, y}{y \, (2-x)} \,) \end{aligned}$$

Finally, for \(1/2<y<1\), we have

$$\begin{aligned}&{A(F^{-1}(y,x))+ W( F^{-1}(y,x) )- W(y,x)} \\&={ \log (\, (2-x)^{-2}\, \frac{( x+y - 2 x\, y)^{-2} }{y^{-2} \, (2- x)^{-2}} \, \frac{1}{ ( x+y - 2 x\, y)^{-2} } \,)= 2\, \log y= A(y).} \end{aligned}$$

This shows that \(W(y,x) = 2 \log (x + y - 2 xy)\) is the involution kernel for \(\log f'(y)\).

We thank the referee for his careful reading which helped us to improve the reading of the text

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, H.H., Lopes, A.O. & Oliveira, E.R. Explicit examples in ergodic optimization. São Paulo J. Math. Sci. 14, 443–480 (2020). https://doi.org/10.1007/s40863-020-00188-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-020-00188-y

Keywords

Navigation