Skip to main content
Log in

Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

In sweet orange, varietal resistance is crucial to avoid citrus canker, a disease caused by Xanthomonas citri subsp. citri (Xcc) that is a significant problem for some of the world’s leading producers. In the present study, transgenic sweet orange plants (Hamlin) overexpressing the A. thaliana Npr1 (non-expressor of pathogenesis-related [PR] genes) gene were produced and assessed for Xcc resistance and for the levels of expression of disease resistance genes. The leaves of these transgenic plants exhibited fewer lesions and reduced bacterial concentrations compared to non-transformed control. Both in vitro and screenhouse experiments on the transgenic plants yielded similar results, which makes in vitro screening an interesting prospect for the initial identification of citrus canker resistance. The stronger expression of EDS1 and PR2 after pathogen inoculation correlated with a higher tolerance response suggesting a possible priming effect. The use of AtNPR1 is an alternative against citrus canker since it led to higher tolerance in a pathogen-dependent response

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An C, Mou Z (2012) Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. PLoS ONE 7, e31130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo FA, Mourão Filho FAA, Mendes BMJ, Almeida WAB, Schinor EH, Pio R, Barbosa JM, Gonzalez SG, Carrer H, Lam E (2006) Genetic transformation of Rangpur lime (Citrus limonia Osbeck) with bO (bacterio-opsin) gene and its initial evaluation for Phytophthora nicotianae resistance. Plant Mol Biol Report 24:185–196

    Article  CAS  Google Scholar 

  • Boscariol RL, Monteiro M, Takahashi EK, Chabregas SM, Vieira MLC, Vieira LGE, Pereira LFP, Cardoso SC, Christiano RSC, Bergamin Filho A, Barbosa JM, Azevedo FA, Mourão Filho FAA, Mendes BMJ (2006) AttacinA gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonoposis pv. citri in transgenic Citrus sinensis ‘Hamlin’. J Am Soc Hortic Sci 131:530–536

    CAS  Google Scholar 

  • Cao H, Glazebrook J, Clark JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 95:6531–6536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso SC, Barbosa-Mendes JM, Boscariol-Camargo RL, Christiano RSC, Bergamin Filho A, Vieira MLC, Mendes BMJ, Mourão Filho FAA (2010) Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. citri. Plant Mol Biol Report 28:185–192

    Article  CAS  Google Scholar 

  • Caserta R, Picchi SC, Takita MA, Tomaz JP, Pereira WEL, Machado MA, Ionescu M, Lindow S, De Souza AA (2014) Expression of Xylella fastidiosa RpfF in citrus disrupts signalling in Xanthomonas citri subsp. citri and thereby its virulence. Mol Plant-Microbe Interact 27:1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Cavalcanti FR, Resende MLV, Pereira RB, Costa JCB, Carvalho CPS (2006) Atividades de quitinase e beta-1,3-glucanase após elicitação das defesas do tomateiro contra a mancha-bacteriana. Pesq Agrop Brasileira 41:1721–1730

    Article  Google Scholar 

  • Chen XK, Zhang JY, Zhang Z, Du XL, Du BB, Qu SC (2012) Overexpressing MhNPR1 in transgenic Fuji apples enhances resistance to apple powdery mildew. Mol Biol Rep 39:8083–8089

  • Chen X, Barnaby JY, Sreedharan A, Huang X, Orbovic V, Grosser JW, Wang N, Dong X, Song W-Y (2013) Over-expression of the citrus gene CtNH1 confers resistance to bacterial canker disease. Physiol Mol Plant Pathol 84:115–122

  • Chern M, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27:101–113

    Article  CAS  PubMed  Google Scholar 

  • Chern MS, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homologue leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact 18:511–520

  • Conrath U (2006) Systemic acquired resistance. Plant Signal Behav 1:179–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong X, Hong Z, Chatterjee J, Kim S, Verma DPS (2008) Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta 229:87–98

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against huanglongbing (HLB; citrus greening). PLoS ONE 10, e0137134

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Peña L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185

    Article  CAS  Google Scholar 

  • Fagoaga C, Lopez C, Mendoza AH, Moreno P, Navarro L, Flores R, Peña L (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165

    Article  CAS  PubMed  Google Scholar 

  • Febres VJ, Lee RF, Moore GA (2008) Transgenic resistance to Citrus tristeza virus in grapefruit. Plant Cell Rep 27:93–104

    Article  CAS  PubMed  Google Scholar 

  • Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant-Microbe Interact 14:1114–1124

  • Fu XZ, Chen CW, Wang Y, Liu JH, Moriguchi T (2011) Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration. BMC Plant Biol 11:55. DOI:10.1186/1471-2229-11-55

  • Grosser JW, Gmitter FG (1990) Protoplast fusion and citrus improvement. Plant Breed Rev 8:339–374

    Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15:1846–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Joshi SJ, Bell AA, Rathore KS (2013) Enhanced resistance against Thielaviopsis basicola in transgenic cotton plants expressing Arabidopsis NPR1 gene. Transgenic Res 22:359–368

  • Le Henanff G, Farine S, Kieffer-Mazet F, Miclot A-S, Heitz T, Mestre P, Bertsch C, Chong J (2011) Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234:405–417

  • Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS, Black L, Green SK, Wang JF, Cheng CP (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13:567–581

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mafra V, Kubo KS, Alves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP, Rodrigues CM, Machado MA (2012) Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE 7, e31263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant-Microbe Interact 19:123–129

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increase disease resistance in Malus x domestica. Mol Plant-Microbe Interact 20:1568–1580

  • Mendes BMJ, Cardoso SC, Boscariol-Camargo RL, Cruz RB, Mourão Filho FAA, Bergamin Filho A (2010) Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathol 59:68–75

  • Ochsenbein C, Przybyla D, Danon A, Landgraf F, Göbel C, Imboden A, Feussner I, Apel K (2006) The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis. The Plant Journal 47:445–456

  • Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975

  • Peleg-Grossman S, Melamed-Book N, Levine A (2012) ROS production during symbiotic infection suppresses pathogenesis-related gene expression. Plant Signal Behav 7:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña L, Cervera M, Juarez J, Ortega C, Pina JA, Duran-Vila N, Navarro L (1995) High efficient Agrobacteruim-mediated transformation and regeneration of citrus. Plant Sci 104:183–191

    Article  Google Scholar 

  • Pieterse CMJ, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

    Article  CAS  PubMed  Google Scholar 

  • Pitino M, Armstrong CM, Duan Y (2015) Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses. Hortic Res 2:15042

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes CA, Francesco AD, Peña EJ, Costa N, Plata MI, Sendin L, Castagnaro AP, García ML (2011) Resistance to Citrus psorosis virus in transgenic sweet orange plants is triggered by coat protein-RNA silencing. J Biotechnol 151:151–158

    Article  CAS  PubMed  Google Scholar 

  • Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Vlot AC, Feys BJ, Niefind K, Parker JE (2011) Different roles of enhanced disease susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in arabidopsis immunity. New Phytologist 191: 107–119

  • Rigano LA, Siciliano F, Enrique R, Sendín L, Filippone P, Torres PS, Qüesta J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant-Microbe Interact 20:1222–1230

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez A, Andrés VS, Cervera M, Redondo A, Alquézar B, Shimada T, Gadea J, Rodrigo MJ, Zacarías L, Palou L, López MM, Castañera P, Peña L (2011) Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol 156:793–802

  • Ryals J, Weymann K, Lawton K, Friedrich L, Ellis D, Steiner HY, Johnson J, Delaney TP, Jesse T, Vos P, Uknes K (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell 9:425–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanches ALR, Miranda SHG, Belasque Junior J, Bassanezi RB (2014) Análise econômica da prevenção e controle do cancro cítrico no estado de São Paulo. Rev Econ Sociol Rural 52:549–566

    Article  Google Scholar 

  • Silva KJP, Brunings A, Peres NA, Mou Z, Folta KM (2015) The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry. Transgenic Res 24:693–704

  • Soprano AS, Abe VY, Smetana JHC, Benedetti CE (2013) Citrus MAF1, a repressor of RNA polymerase III, binds the Xanthomonas citri canker elicitor PthA4 and suppresses citrus canker development. Plant Physiol 163:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of Npr1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Vale FXR, Fernandes Filho EI, Liberato JR, Zambolin L (2001) QUANT- a software to quantify plant disease severity. Proceedings of the International Workshop on Plant Disease Epidemiology, 8, 2001. Ouro Preto, MG, Brazil, International Society of Plant Pathology, p160

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2009) Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231:131–141

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647

    Article  CAS  PubMed  Google Scholar 

  • Yi SY, Min SR, Kwon S-Y (2015) NPR1 is instrumental in priming for the enhanced flg22 induced MPK3 and MPK6 activation. Plant Pathol J 31:192–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanek MA, Reyes CA, Cervera M, Pena EJ, Velazquez K, Costa N, Plata MI, Grau O, Pena L, Garcia ML (2008) Genetic transformation of sweet orange with the coat protein gene of Citrus psorosis virus and evaluation of resistance against the virus. Plant Cell Rep 27:57–66

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basicleucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci U S A 96:6523–6528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Francis MI, Dawson WO, Graham JH, Orbovic V, Triplett EW, Mou Z (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. Eur J Plant Pathol 129:91–100

Download references

Acknowledgments

The authors wish to thank Simone C. Picchi, Janaynna M. Barbosa-Mendes and Luis F. C. da Silva (Centro de Citricultura Sylvio Moreira, IAC) for assistance with Xcc inoculation and screenhouse plant propagation. We also thank Dr. Adrián A. Vojnov (Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Argentina) for providing the Xcc_GFP. This work was supported by FAPESP (grants 09/00058-3, 01/02616-1, INCT-Citros 08/57909-2) and CNPq (grants 471419/2012-5, INCT-Citros 573848/08-4). M.A.M. and M.A.T. are recipients of research fellowships from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel L. Boscariol-Camargo.

Additional information

Section Editor:

Robert Miller

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscariol-Camargo, R.L., Takita, M.A. & Machado, M.A. Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2 . Trop. plant pathol. 41, 341–349 (2016). https://doi.org/10.1007/s40858-016-0108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-016-0108-2

Keywords

Navigation