Skip to main content

Advertisement

Log in

Finite Element Analysis of Different Framework Materials on Maxillary Palateless Implant-Supported Overdenture Prosthesis

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare the stress values of implants and bones in maxillary palateless implant-supported overdentures (IODs) supported by different materials using finite element analysis (FEA).

Methods

Five different models of IODs supported by different framework materials (cobalt chromium alloy, glass, aramid, polyethylene, and carbon fiber-reinforced composites (FRC) were simulated using the FEA method. In each model, four implants were placed bilaterally in the canine and second premolar regions. Static loads of 150 N were applied to the first molar region using the foodstuff method. The von Mises stresses on implants under the overdenture prosthesis and the maximum and minimum principle stresses on the cortical and trabecular bone were evaluated.

Results

The aramid FRC-supported overdenture showed the highest von Mises stress values in the neck of the implants and the connection area between the implants and the locator abutments. When comparing the FRCs, it was found that the stress levels were higher when the overdenture prosthesis was supported by fibers with a low elastic modulus.

Conclusion

It was observed that carbon FRC-supported prosthesis transmit less stress to implants and surrounding tissues than prosthesis supported by cobalt–chromium. Based on this study, fibers with a high elastic modulus are recommended for clinical use as an alternative to metal support materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data used to support the findings of this study are available from the corresponding author on request.

References

  1. Osman, R. B., Elkhadem, A. H., Ma, S., & Swain, M. V. (2013). Finite element analysis of a novel implant distribution to support maxillary overdentures. International Journal of Oral & Maxillofacial Implants, 28(1), 1–10.

    Article  Google Scholar 

  2. Mizuno, Y., Takahashi, T., Gonda, T., & Maeda, Y. (2013). Mechanical analysis of a palateless denture. International Journal of Prosthodontics, 26(5), 419–422.

    Article  PubMed  Google Scholar 

  3. Sadowsky, S. J., & Zitzmann, N. U. (2016). Protocols for the maxillary implant overdenture: a systematic review. International Journal of Oral & Maxillofacial Implants, 31, 182–191.

    Article  Google Scholar 

  4. Takahashi, T., Gonda, T., Tomita, A., & Maeda, Y. (2018). Effect of attachment type on implant strain in maxillary implant overdentures: Comparison of ball, locator, and magnet attachments. Part 2: Palateless Dentures. International Journal of Oral & Maxillofacial Implants, 33(2), 357–364.

    Article  Google Scholar 

  5. Takahashi, T., Gonda, T., & Maeda, Y. (2013). Influence of reinforcing materials on strain of maxillary complete denture. Acta Odontologica Scandinavica, 71(2), 307–311.

    Article  CAS  PubMed  Google Scholar 

  6. Narva, K. K., Lassila, L. V., & Vallittu, P. K. (2005). The static strength and modulus of fiber reinforced denture base polymer. Dental Materials, 21(5), 421–428.

    Article  CAS  PubMed  Google Scholar 

  7. Al Jabbari, Y. S. (2014). Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature. The Journal of Advanced Prosthodontics, 6(2), 138–145.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kostoulas, I., Kavoura, V. T., Frangou, M. J., & Polyzois, G. L. (2008). Fracture force, deflection, and toughness of acrylic denture repairs involving glass fiber reinforcement. Journal of Prosthodontics, 17(4), 257–261.

    Article  PubMed  Google Scholar 

  9. Dixon, D. L., & Breeding, L. C. (1992). The transverse strengths of three denture base resins reinforced with polyethylene fibers. The Journal of Prosthetic Dentistry, 67(3), 417–419.

    Article  CAS  PubMed  Google Scholar 

  10. Jagger, D. C., Harrison, A., & Jandt, K. D. (1999). The reinforcement of dentures. Journal of Oral Rehabilitation, 26(3), 185–194.

    Article  CAS  PubMed  Google Scholar 

  11. Gibreel, M., Lassila, L. V., Närhi, T. O., Perea-Lowery, L., & Vallittu, P. K. (2018). Load-bearing capacity of simulated Locator-retained overdenture system. The Journal of Prosthetic Dentistry, 120(4), 558–564.

    Article  PubMed  Google Scholar 

  12. Galan, D., & Lynch, E. (1989). The effect of reinforcing fibres in denture acrylics. Journal of the Irish Dental Association, 35(3), 109–113.

    CAS  PubMed  Google Scholar 

  13. Kanie, T., Fujii, K., Arikawa, H., & Inoue, K. (2000). Flexural properties and impact strength of denture base polymer reinforced with woven glass fibers. Dental Materials, 16(2), 150–158.

    Article  CAS  PubMed  Google Scholar 

  14. Karacaer, O., Dogan, O. M., Tincer, T., & Dogan, A. (2001). Reinforcement of maxillary dentures with silane-treated ultra high modulus polyethylene fibers. Journal of Oral Science, 43(2), 103–107.

    Article  CAS  PubMed  Google Scholar 

  15. Ladizesky, N. H., Ho, C. F., & Chow, T. W. (1992). Reinforcement of complete denture bases with continuous high performance polyethylene fibers. The Journal of Prosthetic Dentistry, 68(6), 934–939.

    Article  CAS  PubMed  Google Scholar 

  16. Berger, G., de Oliveira Pereira, L. F., de Souza, E. M., & Rached, R. N. (2019). A 3D finite element analysis of glass fiber reinforcement designs on the stress of an implant-supported overdenture. The Journal of Prosthetic Dentistry, 121(5), 865-e1.

    Article  Google Scholar 

  17. Cheng, K. C., Liu, P. H., Chen, H. S., & Lan, T. H. (2022). Stress distribution of four-unit implant-supported fixed partial prosthesis with different numbers and positions of fixtures in maxilla anterior region-3D FEA. Journal of Medical and Biological Engineering, 42(4), 526–533.

    Article  Google Scholar 

  18. Gibreel, M., Lassila, L. V., Närhi, T. O., Perea-Lowery, L., & Vallittu, P. K. (2021). Midline denture base strains of glass fiber-reinforced single implant-supported overdentures. The Journal of Prosthetic Dentistry, 126(3), 407–412.

    Article  CAS  PubMed  Google Scholar 

  19. Rached, R. N., de Souza, E. M., Dyer, S. R., & Ferracane, J. L. (2011). Dynamic and static strength of an implant-supported overdenture model reinforced with metal and nonmetal strengtheners. The Journal of Prosthetic Dentistry, 106(5), 297–304.

    Article  CAS  PubMed  Google Scholar 

  20. Zarb, G. A., & Schmitt, A. (1994). Osseointegration for elderly patients: the Toronto study. The Journal of Prosthetic Dentistry, 72(5), 559–568.

    Article  CAS  PubMed  Google Scholar 

  21. Pickering, K. L., Efendy, M. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98–112.

    Article  CAS  Google Scholar 

  22. Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856–873.

    Article  Google Scholar 

  23. Cheng, Y. Y., Li, J. Y., Fok, S. L., Cheung, W. L., & Chow, T. W. (2010). 3D FEA of high-performance polyethylene fiber reinforced maxillary dentures. Dental materials, 26(9), e211–e219.

    Article  CAS  PubMed  Google Scholar 

  24. Chun, H. J., Park, D. N., Han, C. H., Heo, S. J., Heo, M. S., & Koak, J. Y. (2005). Stress distributions in maxillary bone surrounding overdenture implants with different overdenture attachments. Journal of Oral Rehabilitation, 32(3), 193–205.

    Article  PubMed  Google Scholar 

  25. Koca, O. L., Eskitascioglu, G., & Usumez, A. (2005). Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. The Journal of Prosthetic Dentistry, 93(1), 38–44.

    Article  PubMed  Google Scholar 

  26. Kim, M. J., & Hong, S. O. (2016). Finite element analysis on stress distribution of maxillary implant-retained overdentures depending on the Bar attachment design and palatal coverage. The Journal of Advanced Prosthodontics, 8(2), 85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Visible Human Project. The National Library of Medicine (NLM), FACT SHEETS Office of Communications and Public Liaison National Library of Medicine. Maryland ABD. Retrieved April, 2022, from https://www.nlm.nih.gov/research/visible/visible_human.htm

  28. Misch, C. E. (2005). Dental implant prosthetics (pp. 211- 223). Mosby Inc.

  29. Lekholm, U., & Zarb, G. A. (1985). Patient selection and preparation. Tissue integrated prosthesis: Osseointegration in clinical dentistry (pp. 199–209). Quintessence Publishing Company.

  30. Bonnet, A. S., Postaire, M., & Lipinski, P. (2009). Biomechanical study of mandible bone supporting a four-implant retained bridge: Finite element analysis of the influence of bone anisotropy and foodstuff position. Medical Engineering & Physics, 31(7), 806–815.

    Article  CAS  Google Scholar 

  31. Ozan, O., & Kurtulmus-Yilmaz, S. (2018). Biomechanical comparison of different implant inclinations and cantilever lengths in all-on-4 treatment concept by three-dimensional finite element analysis. International Journal of Oral & Maxillofacial Implants, 33(1), 64–71.

    Article  Google Scholar 

  32. Ferreira, M. B., Barão, V. A., Delben, J. A., Faverani, L. P., Hipólito, A. C., & Assunção, W. G. (2014). Non-linear 3D finite element analysis of full-arch implant-supported fixed dentures. Materials Science and Engineering: C, 38, 306–314.

    Article  CAS  PubMed  Google Scholar 

  33. Bhering, C. L. B., Mesquita, M. F., Kemmoku, D. T., Noritomi, P. Y., Consani, R. L. X., & Barão, V. A. R. (2016). Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Materials Science and Engineering: C, 69, 715–725.

    Article  CAS  PubMed  Google Scholar 

  34. Assunção, W. G., Gomes, E. A., Barao, V. A. R., Delben, J. A., Tabata, L. F., & de Sousa, E. A. C. (2010). Effect of superstructure materials and misfit on stress distribution in a single implant-supported prosthesis: A finite element analysis. Journal of Craniofacial Surgery, 21(3), 689–695.

    Article  PubMed  Google Scholar 

  35. McCabe, J. F., & Walls, A. W. (Eds.). (2013). Applied dental materials. New York: Wiley.

    Google Scholar 

  36. Amaral, C. F., Gomes, R. S., Garcia, R. C. R., & Cury, A. A. D. B. (2018). Stress distribution of single-implant–retained overdenture reinforced with a framework: A finite element analysis study. The Journal of Prosthetic Dentistry, 119(5), 791–796.

    Article  PubMed  Google Scholar 

  37. John, J., Gangadhar, S. A., & Shah, I. (2001). Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers. The Journal of Prosthetic Dentistry, 86(4), 424–428.

    Article  CAS  PubMed  Google Scholar 

  38. Karacaer, Ö., Polat, T. N., Tezvergıl, A., Lassıla, L. V., & Vallıttu, P. K. (2003). The effect of length and concentration of glass fibers on the mechanical properties of an injection-and a compression-molded denture base polymer. The Journal of Prosthetic Dentistry, 90(4), 385–393.

    Article  CAS  PubMed  Google Scholar 

  39. Venkat, R., Gopichander, N., & Vasantakumar, M. (2013). Comprehensive analysis of repair/reinforcement materials for polymethyl methacrylate denture bases: Mechanical and dimensional stability characteristics. The Journal of Indian Prosthodontic Society, 13(4), 439–449.

    Article  CAS  PubMed  Google Scholar 

  40. Atiyah, S. M., & Hamad, T. I. (2014). Effect of different palatal vault shapes and woven glass fiber reinforcement on dimensional stability of high impact acrylic denture base [Part I]. Journal of Baghdad College of Dentistry, 26(4), 90–94.

    Article  Google Scholar 

  41. Durand, L. B., Guimarães, J. C., Monteiro Junior, S., & Baratieri, L. N. (2015). Effect of ceramic thickness and composite bases on stress distribution of inlays-a finite element analysis. Brazilian Dental Journal, 26, 146–151.

    Article  PubMed  Google Scholar 

  42. Geng, J. P., Tan, K. B., & Liu, G. R. (2001). Application of finite element analysis in implant dentistry: A review of the literature. The Journal of Prosthetic Dentistry, 85(6), 585–598.

    Article  CAS  PubMed  Google Scholar 

  43. Silva, N. R., Coelho, P. G., Fernandes, C. A., Navarro, J. M., Dias, R. A., & Thompson, V. P. (2009). Reliability of one-piece ceramic implant. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 88(2), 419–426.

    Google Scholar 

  44. Tribst, J. P. M., Campanelli de Morais, D., Melo de Matos, J. D., Lopes, G. D. R. S., Dal Piva, A. M. D. O., Souto Borges, A. L., Bottino, M. A., & Ausiello, P. (2022). Influence of framework material and posterior implant angulation in full-arch all-on-4 implant-supported prosthesis stress concentration. Dentistry Journal, 10(1), 12.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kelkar, K. C., Bhat, V., & Hegde, C. (2021). Finite element analysis of the effect of framework materials at the bone–implant interface in the all-on-four implant system. Dental Research Journal, 18, 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Villefort, R. F., Tribst, J. P. M., Dal Piva, A. M. D. O., Borges, A. L., Binda, N. C., Ferreira, C. E. D. A., & von Zeidler, S. L. V. (2020). Stress distribution on different bar materials in implant-retained palatal obturator. PLoS ONE, 15(10), e0241589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, H. L., Lin, T. W., Tsai, H. L., Wu, Y. L., & Wu, A. Y. J. (2022). Biomechanical effects of bone atrophy, implant design, and vertical or tilted of posterior implant on all-on-four concept implantation: Finite element analysis. Journal of Medical and Biological Engineering, 42(4), 488–497.

    Article  Google Scholar 

  48. Tanino, F., Hayakawa, I., Hirano, S., & Minakuchi, S. (2007). Finite element analysis of stress-breaking attachments on maxillary implant-retained overdentures. International Journal of Prosthodontics, 20(2), 193–198.

    PubMed  Google Scholar 

  49. Yoo, J. S., Kwon, K. R., Noh, K., Lee, H., & Paek, J. (2017). Stress analysis of mandibular implant overdenture with locator and bar/clip attachment: Comparative study with differences in the denture base length. The Journal of Advanced Prosthodontics, 9(3), 143–151.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sevimay, M., Turhan, F., Kiliçarslan, M. A., & Eskitascioglu, G. (2005). Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. The Journal of Prosthetic Dentistry, 93(3), 227–234.

    Article  CAS  PubMed  Google Scholar 

  51. Yokoyama, S., Wakabayashi, N., Shiota, M., & Ohyama, T. (2004). The influence of implant location and length on stress distribution for three-unit implant-supported posterior cantilever fixed partial dentures. The Journal of Prosthetic Dentistry, 91(3), 234–240.

    Article  PubMed  Google Scholar 

  52. Wu, A. Y. J., Hsu, J. T., Fuh, L. J., & Huang, H. L. (2020). Biomechanical effect of implant design on four implants supporting mandibular full-arch fixed dentures: In vitro test and finite element analysis. Journal of the Formosan Medical Association, 119(10), 1514–1523.

    Article  PubMed  Google Scholar 

Download references

Funding

This study has not been financially supported by any institution or organization.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by EGS, ET, and ÖK. The first draft of the manuscript was written by EGS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elifnur Güzelce Sultanoğlu.

Ethics declarations

Conflict of ınterest

No conflicts of interest in this study.

Ethical Approval

No human or animal data were used in this study. All study was done in computer environment. Ethical approval is not required.

Consent to Participate

Not required.

Consent to Publish

Not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güzelce Sultanoğlu, E., Tokar, E. & Karacer, Ö. Finite Element Analysis of Different Framework Materials on Maxillary Palateless Implant-Supported Overdenture Prosthesis. J. Med. Biol. Eng. 43, 239–248 (2023). https://doi.org/10.1007/s40846-023-00786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-023-00786-z

Keywords

Navigation