Skip to main content
Log in

An Accurate Segmentation Framework for Static Ultrasound Images of the Gestational Sac

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Abnormal morphology characteristics of the gestational sac give accurate prediction for the early spontaneous abortion. However, due to the high noise and the weak transmission of ultrasonic signals, accurate segmentation is an urgent and challenging task for quantitative morphology analysis of gestational sacs in ultrasound images.

Methods

This paper proposes an accurate segmentation framework for gestational sac ultrasound images from two different scanning machines based on an improved level-set algorithm driven by shape domain-specific knowledge. Firstly, the gestational sac candidate image is roughly segmented using the Chan-Vese (CV) model, and the minimum convex polygon is reserved according to the quasi-circular character of the sacs. Then, the gestational sacs are divided into two categories, such as the concave and convex ones, followed by separate corresponding processing for further accurate segmentation.

Results

A total of 194 ultrasound images of the gestational sacs of 6–9 were processed in this experiment. For testing, we have obtained the mean Dice and Intersection over Union (IOU) value of 0.916 and 0.842, and the average sensitivity (SEN) and positive prediction rate (PPV) are 0.958 and 0.890, respectively. The evaluation results show that our proposed segmentation framework has better performance than other commonly used segmentation methods.

Conclusion

The evaluation results show that our proposed segmentation framework has better performance than other commonly used segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liang, R., Ye, R., Li, H., Ren, A., & Liu, J. (2010). Study on the current status of spontaneous abortion of primigravid women in Jiaxing of Zhejiang province, China. Chinese Journal of Epidemiology, 31(7), 755–758.

    PubMed  Google Scholar 

  2. Avant, R. F. (1983). Spontaneous abortion and ectopic pregnancy. Primary Care, 10(2), 161–172.

    Article  CAS  Google Scholar 

  3. Mcbride, W. Z. (1991). Spontaneous abortion. American Family Physician, 43(1), 175–182.

    CAS  PubMed  Google Scholar 

  4. Xie, X., Gou, W. L. (2013). Obstetrics and Gynecology, 8th ed. Beijing, China: People’s Medical Publishing House, pp. 47–49, ISBN 978–71–1717–180–9.

  5. Xiaobin, Hu., Miao, M., Bai, Y., Cheng, N., & Ren, X. (2018). Reproductive factors and risk of spontaneous abortion in the Jinchang cohort. International Journal of Environmental Research and Public Health, 15, 2444.

    Article  Google Scholar 

  6. Detti, L., Francillon, L., Christiansen, M. E., Peregrin-Alvarez, I., & Roman, R. A. (2020). Early pregnancy ultrasound measurements and prediction of first trimester pregnancy loss: A logistic model. Scientific Reports, 10(1), 1545.

    Article  CAS  Google Scholar 

  7. Nyberg, D. A., Mack, L. A., Laing, F. C., & Patten, R. M. (1987). Distinguishing normal from abnormal gestational sac growth in early pregnancy. Journal of ultrasound in medicine, 6(1), 23–27.

    Article  CAS  Google Scholar 

  8. Women’s, N. C. C. F., & Health, C. S. (2012). Ectopic pregnancy and miscarriage: Diagnosis and initial management in early pregnancy of ectopic pregnancy and miscarriage. Royal College of Obstetricians and Gynaecologists, 1(4), 21–28.

    Google Scholar 

  9. Bourne, T., & Bottomley, C. (2012). When is a pregnancy nonviable and what criteria should be used to define miscarriage? Fertility & Sterility, 98(5), 1091–1096.

    Article  Google Scholar 

  10. Levi, C. S., Lyons, E. A., & Lindsay, D. J. (1990). Ultrasound in the first trimester of pregnancy. Radiologic Clinics of North America, 28(1), 19–38.

    CAS  PubMed  Google Scholar 

  11. Abdallah, Y., Daemen, A., Kirk, E., Pexsters, A., Naji, O., Stalder, C., et al. (2011). Limitations of current definitions of miscarriage using mean gestational sac diameter and crown-rump length measurements: A multicenter observational study. Ultrasound in Obstetrics & Gynecology, 38(5), 497–502.

    Article  CAS  Google Scholar 

  12. Khazendar, S., Farren, J., Al-Assam, H., Sayasneh, A., & Jassim, S. A. (2014). Automatic identification of early miscarriage based on multiple features extracted from ultrasound images. Conference in Medical Image Understanding & Analysis, DOI, 10(1117/12), 2057720.

    Google Scholar 

  13. Odeh, M., Ophir, E., Grinin, V., Kais, M., Tendler, R., & Bornstein, J. (2011). Prediction of abortion using three-dimensional ultrasound volumetry of the gestational sac and the amniotic sac in threatened abortion. Journal of Clinical Ultrasound, 38(S1), 60–60.

    Google Scholar 

  14. Noble, J. A., & Boukerroui, D. (2006). Ultrasound image segmentation: A survey. IEEE Transactions on Medical Imaging, 25(8), 987–1010.

    Article  Google Scholar 

  15. Meiburger, K. M., Acharya, U. R., & Molinari, F. (2018). Automated localization and segmentation techniques for B-mode ultrasound images: A review. Computers in Biology & Medicine, 92, 210–235.

    Article  Google Scholar 

  16. Xian, M., Zhang, Y., Cheng, H. D., Xu, F., Zhang, B., & Ding, J. (2018). Breast ultrasound image segmentation: A survey. International Journal of Computer Assisted Radiology & Surgery, 12(3), 1–15.

    Google Scholar 

  17. Jing, X., Chen, K., Yang, X., Dan, W., & Zhu, S. (2007). Adaptive level set method for segmentation of liver tumors in minimally invasive surgery using ultrasound images. International conference on bioinformatics & biomedical engineering. 1091–1094.

  18. Yoshida, H., Keserci, B., Casalino, D. D., Coskun, A., Ozturk, O. & Savranlar, A. (1999). Segmentation of liver tumors in ultrasound images based on scale-space analysis of the continuous wavelet transform. Ultrasonics Symposium. IEEE. 1713–1716.

  19. Wang, W., Qin, J., Zhu, L., Ni, D., & Heng, P. A. (2014). Detection and Measurement of Fetal Abdominal Contour in Ultrasound Images via Local Phase Information and Iterative Randomized Hough Transform. Bio Medical Materials & Engineering, 23(23), S1313–S1319.

    Google Scholar 

  20. Rajinikanth, V., Dey, N., Kumar, R., Panneerselvam, J., & Raja, N. S. M. (2019). Fetal head periphery extraction from ultrasound image using Jaya algorithm and Chan-Vese segmentation. International conference on pervasive computing advances and applications (PerCAA-2019).

  21. Zayed, N. M., Badwi, A. M., Elsayad, A., Elsherif, M. S., & Youssef, A.-B. M. (2001). Wavelet segmentation for fetal ultrasound images. IEEE Midwest Symposium on Circuits & Systems, Volume 1.

  22. Rueda, S., Fathima, S., Knight, C. L., Yaqub, M., Papageorghiou, A. T., Rahmatullah, B., et al. (2014). Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: A grand challenge. IEEE Transactions on medical imaging, 33(4), 797–813.

    Article  Google Scholar 

  23. Chakkarwar, V. A., Joshi, M. S., & Revankar, P. S. (2010). Automated analysis of gestational sac in medical image processing. 2010 IEEE 2nd International Advance Computing Conference (IACC), pp. 304–309.

  24. Kolapkar, S., & Wakankar, A. (2014). Automated gestational age estimation for monitoring fetal growth. 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies, pp. 1104–1109.

  25. Supriyanti, R., Putri, D. A., Murdyantoro, E., & Widodo, H. B. (2013). Comparing edge detection methods to localize uterus area on ultrasound image. 2013 3rd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME).

  26. Ibrahim, D. A., Al-Assam, H., Du, H., Farren, J., & Jassim, S. (2016). Automatic segmentation and measurements of gestational sac using static B-mode ultrasound images. SPIE Commercial + Scientific Sensing and Imaging.

  27. Zhang, L., Chen, S., Chin, C. T., Wang, T., & Li, S. (2012). Intelligent scanning: Automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination. Medical Physics, 39(8), 5015–5027.

    Article  Google Scholar 

  28. Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154.

    Article  Google Scholar 

  29. Yun, P. (2006). Segmentation of medical ultrasound image based on active contour model. Master's thesis, Sichuan University. China.

  30. Liu, S., Yi, W., Xin, Y., Lei, B., Liu, L., Li, S. X., et al. (2019). Deep learning in medical ultrasound analysis: A review. Engineering, 5(2), 183–350.

    Article  Google Scholar 

  31. Xin, Y., Yu, L., Li, S., Xu, W., Na, W., Jing, Q., et al. (2017). Towards automatic semantic segmentation involumetric ultrasound. International conference on medical image computing & computer-assisted intervention, pp. 711–719.

  32. Torrents-Barrena, J., Piella, G., Masoller, N., Gratacós, E., Eixarch, E., Ceresa, M., et al. (2018). Segmentation and classification in MRI and US fetal imaging: Recent trends and future prospects. Medical Image Analysis., 51, 61–88.

    Article  Google Scholar 

  33. Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing., 10(2), 266–277.

    Article  CAS  Google Scholar 

  34. Osher, S. (1988). Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1), 12–49.

    Article  Google Scholar 

  35. Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure & Applied Mathematics, 42(5), 577–685.

    Article  Google Scholar 

  36. Chen, S.-L., Zhang, J.-Y., Lu, X.-G., Chou, K.-C., & Austin Chang, Y. (2006). Application of Graham scan algorithm in binary phase diagram calculation. Journal of Phase Equilibria & Diffusion, 27(2), 121–125.

    Article  CAS  Google Scholar 

  37. Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing. Prentice hall. International, 28(4), 484–486.

    Google Scholar 

  38. Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2), 303–338.

    Article  Google Scholar 

  39. Fidon, L., Li, W., Garcia-Peraza-Herrera, L. C., Ekanayake, J., Kitchen, N., Ourselin, S., et al. (2017). Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks (pp. 64–76). Cham: Springer.

    Google Scholar 

  40. Shi, L., Wang, D., Liu, S., Pu, Y., Wang, Y., Chu, W. C., et al. (2013). Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction. Journal of neuroscience methods, 213(1), 138–146.

    Article  Google Scholar 

  41. Ibrahim, D. A., Al-Assam, H., Jassim, S., & Du, H. (2017). Multi-level Trainable Segmentation for Measuring Gestational and Yolk Sacs from Ultrasound Images (pp. 86–97). Springer.

    Google Scholar 

  42. Moor, T. D., Rodríguez-Ruiz, A., Mérida, A., Mann, R. M., & Teuwen, J. (2018). Automated soft tissue lesion detection and segmentation in digital mammography using a u-net deep learning network. In IWBI 2018.

  43. Santoso, A. P., & Sigit, R. (2017). Health monitoring of fetal ultrasound image using active contour models. 2017 International seminar on application for technology of information and communication (iSemantic), IEEE, pp. 192–197.

  44. Li, H., Fang, J., Liu, S., Liang, X., Yang, X., Mai, Z., et al. (2019). CR-Unet: A composite network for ovary and follicle segmentation in ultrasound images. IEEE Journal of Biomedical and Health Informatics, 24, 974–983.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program (2016YFC1000505), the National Natural Science Foundation of China (Grant Numbers: 81871219, 81671469), and the Liao Ning Revitalization Talents Program (XLYC1902099).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangfang Han or Yudong Yao.

Ethics declarations

Conflict of interest

The Authors declare that they have no conflict of interest.

Ethical approval

The research related to human subject use has complied with all the relevant national regulations, and institutional policies. (The hospital provides the proof).

Availability of data and material

Upon request.

Code availability

Upon request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Wang, Y., Zhang, Q. et al. An Accurate Segmentation Framework for Static Ultrasound Images of the Gestational Sac. J. Med. Biol. Eng. 42, 49–62 (2022). https://doi.org/10.1007/s40846-021-00674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-021-00674-4

Keywords

Navigation