Skip to main content
Log in

A Comparative Assessment of Different Approaches of Segmentation and Classification Methods on Childhood Medulloblastoma Images

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Computational pathology involves the analysis of pathological images at two powers of microscopic examination: low (or architectural) power and high (or cell) power. Analysis at both these levels is highly crucial for treatment planning, or prognosis, of the patient. The present paper is a study on childhood medulloblastoma (CMB) using an indigenously collected image dataset. The region of interest (RoI) for the low power is patches (or sections) from the architectural level and for the high power, the nucleus.

Methods

Four deep learning semantic segmentation and eight machine learning segmentation algorithms were compared and evaluated on the same dataset. The performance was measured using the Jaccard coefficient, which established the superiority of Fractal Net with 79.21% over other algorithms. Metrics such as Accuracy, Dice coefficient, F1-Score, Loss, Precision and Recall were used to compare the deep learning segmentation methods. Jaccard loss was used as an evaluation matrix for the traditional segmentation experiments. Subsequently, classification experiments were performed for comparison at both the powers and binary (normal vs abnormal) as well as multilevel (four subtypes of CMB) classification.

Results

The cell-based classification study showed 95.4% and 62.1% accuracy for binary and multi-level, respectively. Here, the features texture, shape, and color contributed to optimum classification. Next, the patch-based classification experiments involved a comparison of texture analysis using machine learning methods with two pre-trained deep learning classification models: Alexnet and VGG-16, using a softmax classifier. Here, it was observed that machine learning models outperform the deep learning models with 100% and 91.3% accuracy for both binary and multi-level, respectively.

Conclusion

We hypothesize that combining both architectural and cell classification could lead to a more effective prognosis. The strength of the paper is the combined segmentation and classification study at two powers of microscope magnification using both classical machine learning as well as current deep learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The images will be made public after we complete our work.

Code Availability

The code can be made available on request.

References

  1. Louis, D. N., Feldman, M., Carter, A. B., Dighe, A. S., Pfeifer, J. D., Bry, L., Almeida, J. S., Saltz, J., Braun, J., Tomaszewski, J. E., Gilbertson, J. R., Sinard, J. H., Gerber, G. K., Galli, S. J., Golden, J. A., & Becich, M. J. (2016). Computational pathology: A path ahead. Archives of Pathology & Laboratory Medicine, 140(1), 41–50. https://doi.org/10.5858/arpa.2015-0093-SA

    Article  Google Scholar 

  2. Bahman Rasuli, F. G. (2016). WHO classification of C.N.S. tumours. Radiopaedia 2021 Virtual Conference. https://radiopaedia.org/articles/who-classification-of-cns-tumours-1

  3. Eberhart, C. G., Kepner, J. L., Goldthwaite, P. T., Kun, L. E., Duffner, P. K., Friedman, H. S., Strother, D. R., & Burger, P. C. (2002). Histopathologic grading of medulloblastomas: A Pediatric Oncology Group study. Cancer, 94(2), 552–560. https://doi.org/10.1002/cncr.10189

    Article  PubMed  Google Scholar 

  4. Kumar, R., Srivastava, R., & Srivastava, S. (2015). Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features. Journal of Medical Engineering, 2015, 1–14. https://doi.org/10.1155/2015/457906

    Article  Google Scholar 

  5. Saha, M., & Chakraborty, C. (2018). Her2Net: a deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation. IEEE Transactions on Image Processing, 27(5), 2189–2200. https://doi.org/10.1109/TIP.2018.2795742

    Article  PubMed  Google Scholar 

  6. Isaksson, J., Arvidsson, I., Aastrom, K., & Heyden, A. (2017). Semantic segmentation of microscopic images of H&E stained prostatic tissue using CNN. International Joint Conference on Neural Networks (IJCNN), 2017, 1252–1256. https://doi.org/10.1109/IJCNN.2017.7965996

    Article  Google Scholar 

  7. Méndez, A. J., Tahoces, P. G., Lado, M. J., Souto, M., & Vidal, J. J. (1998). Computer-aided diagnosis: Automatic detection of malignant masses in digitized mammograms. Medical Physics, 25(6), 957–964. https://doi.org/10.1118/1.598274

    Article  PubMed  Google Scholar 

  8. Waheed, S., Moffitt, R. A., Chaudry, Q., Young, A. N., & Wang, M. D. (2007). Computer Aided Histopathological Classification of Cancer Subtypes. 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering (pp. 503–508). https://doi.org/10.1109/BIBE.2007.4375608

  9. Kather, J. N., Weis, C.-A., Bianconi, F., Melchers, S. M., Schad, L. R., Gaiser, T., Marx, A., & Zöllner, F. G. (2016). Multi-class texture analysis in colorectal cancer histology. Scientific Reports, 6(1), 27988. https://doi.org/10.1038/srep27988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Milaji, Z., Ersoy, I., Hafiane, A., Palaniappan, K., & Bunyak, F. (2019). Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images. Pattern Recognition Letters, 119, 214–221. https://doi.org/10.1016/j.patrec.2017.09.015

    Article  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  12. Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:abs/1409.1556

  13. Avilés-Cruz, C., Villegas, J., Arechiga-Martínez, R., & Escarela-Perez, R. (2004). Unsupervised font clustering using stochastic versio of the EM algorithm and global texture analysis. In C. O. J. A. Sanfeliu, A. Martínez, & J. F. Trinidad (Eds.), Lecture notes in computer science (Vol. 3287, pp. 275–286). Springer. https://doi.org/10.1007/978-3-540-30463-0_34

    Chapter  Google Scholar 

  14. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056

    Article  CAS  Google Scholar 

  15. Lu, C., Mahmood, M., Jha, N., & Mandal, M. (2012). A robust automatic nuclei segmentation technique for quantitative histopathological image analysis. Analytical and Quantitative Cytopathology and Histopathology, 34(6), 296–308.

    PubMed  Google Scholar 

  16. Chang, H., Han, J., Borowsky, A., Loss, L., Gray, J. W., Spellman, P. T., & Parvin, B. (2013). Invariant delineation of nuclear architecture in glioblastoma multiforme for clinical and molecular association. IEEE Transactions on Medical Imaging, 32(4), 670–682. https://doi.org/10.1109/TMI.2012.2231420

    Article  PubMed  Google Scholar 

  17. Filipczuk, P., Fevens, T., Krzyzak, A., & Monczak, R. (2013). Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Transactions on Medical Imaging, 32(12), 2169–2178. https://doi.org/10.1109/TMI.2013.2275151

    Article  PubMed  Google Scholar 

  18. Sethi, A., Sha, L., Deaton, R. J., Macias, V., Beck, A. H., & Gann, P. H. (2015). Abstract LB-285: Computational pathology for predicting prostate cancer recurrence. Molecular and Cellular Biology. https://doi.org/10.1158/1538-7445.AM2015-LB-285

    Article  Google Scholar 

  19. Jensen, T. R., & Schmainda, K. M. (2009). Computer-aided detection of brain tumor invasion using multiparametric MRI. Journal of Magnetic Resonance Imaging, 30(3), 481–489. https://doi.org/10.1002/jmri.21878

    Article  PubMed  Google Scholar 

  20. Iqbal, S., Khan, M. U. G., Saba, T., & Rehman, A. (2018). Computer-assisted brain tumor type discrimination using magnetic resonance imaging features. Biomedical Engineering Letters, 8(1), 5–28. https://doi.org/10.1007/s13534-017-0050-3

    Article  PubMed  Google Scholar 

  21. Dandıl, E., Çakıroğlu, M., & Ekşi, Z. (2015). In Computer-aided diagnosis of malign and benign brain tumors on MR images (pp. 157–166). https://doi.org/10.1007/978-3-319-09879-1_16

  22. El-Dahshan, E.-S.A., Mohsen, H. M., Revett, K., & Salem, A.-B.M. (2014). Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert Systems with Applications, 41(11), 5526–5545. https://doi.org/10.1016/j.eswa.2014.01.021

    Article  Google Scholar 

  23. Sun, L., Zhang, S., Chen, H., & Luo, L. (2019). Brain tumor segmentation and survival prediction using multimodal mri scans with deep learning. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2019.00810

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift Für Medizinische Physik, 29(2), 102–127. https://doi.org/10.1016/j.zemedi.2018.11.002

    Article  PubMed  Google Scholar 

  25. Khan, S. S., & Surya, S. R. (2017). Robust cell detection of histopathological brain tumor images and analyzing its textual features. 2017 2nd International Conference on Communication and Electronics Systems (ICCES) (pp. 879–884). https://doi.org/10.1109/CESYS.2017.8321210

  26. Attallah, O. (2021). MB-AI-His: Histopathological diagnosis of pediatric medulloblastoma and its subtypes via AI. Diagnostics, 11(2), 359. https://doi.org/10.3390/diagnostics11020359

    Article  PubMed  PubMed Central  Google Scholar 

  27. Das, D., Mahanta, L. B., Ahmed, S., Baishya, B. K., & Haque, I. (2018). Study on contribution of biological interpretable and computer-aided features towards the classification of childhood medulloblastoma cells. Journal of Medical Systems, 42(8), 151. https://doi.org/10.1007/s10916-018-1008-4

    Article  PubMed  Google Scholar 

  28. Das, D., Mahanta, L. B., Ahmed, S., Baishya, B. K., & Haque, I. (2019). Automated classification of childhood brain tumours based on texture feature. Songklanakarin Journal of Science and Technology, 41(5), 1014–1020. https://doi.org/10.14456/sjst-psu.2019.128

    Article  Google Scholar 

  29. Das, D., Mahanta, L. B., Ahmed, S., & Baishya, B. K. (2020). Classification of childhood medulloblastoma into WHO-defined multiple subtypes based on textural analysis. Journal of Microscopy, 279(1), 26–38. https://doi.org/10.1111/jmi.12893

    Article  PubMed  Google Scholar 

  30. Galaro, J., Judkins, A. R., Ellison, D., Baccon, J., & Madabhushi, A. (2011). An integrated texton and bag of words classifier for identifying anaplastic medulloblastomas. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, 3443–3446. https://doi.org/10.1109/IEMBS.2011.6090931

    Article  PubMed  Google Scholar 

  31. Lai, Y., Viswanath, S., Baccon, J., Ellison, D., Judkins, A. R., & Madabhushi, A. (2011). A texture-based classifier to discriminate anaplastic from non-anaplastic medulloblastoma. 2011 IEEE 37th Annual Northeast Bioengineering Conference (NEBEC) (pp. 1–2). https://doi.org/10.1109/NEBC.2011.5778641

  32. Cruz-Roa, A., Arévalo, J., Judkins, A., Madabhushi, A., & González, F. (2015). A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning. In E. Romero, N. Lepore, J. D. García-Arteaga, & J. Brieva (Eds.), (p. 968103). https://doi.org/10.1117/12.2208825

  33. Tchikindas, L., Sparks, R., Baccon, J., Ellison, D., Judkins, A. R., & Madabhushi, A. (2011). Segmentation of nodular medulloblastoma using Random Walker and Hierarchical Normalized Cuts. 2011 IEEE 37th Annual Northeast Bioengineering Conference (NEBEC) (pp. 1–2). https://doi.org/10.1109/NEBC.2011.5778640

  34. Das, D., & Mahanta, L. (2019). On the study of childhood medulloblastoma auto cell segmentation from histopathological tissue samples. In B. Deka, P. Maji, S. Mitra, D. K. Bhattacharyya, P. K. Bora, & S. K. Pal (Eds.), Pattern recognition and machine intelligence (Vol. 11942). Springer International Publishing. https://doi.org/10.1007/978-3-030-34872-4

    Chapter  Google Scholar 

  35. Liciotti, D., Paolanti, M., Pietrini, R., Frontoni, E., & Zingaretti, P. (2018). Convolutional Networks for Semantic Heads Segmentation using Top-View Depth Data in Crowded Environment. 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 1384–1389). https://doi.org/10.1109/ICPR.2018.8545397

  36. Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  PubMed  Google Scholar 

  37. Larsson, G., Maire, M., & Shakhnarovich, G. (2016). FractalNet: Ultra-Deep Neural Networks without Residuals. arXiv:1605.07648

  38. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778). https://doi.org/10.1109/CVPR.2016.90

  39. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation (pp. 234–241). https://doi.org/10.1007/978-3-319-24574-4_28

  40. Long, J., Shelhamer, E., & Darrell, T. (2014). Fully Convolutional Networks for Semantic Segmentation. http://arxiv.org/abs/1411.4038

  41. Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald, K., Dovzhenko, A., Tietz, O., Dal Bosco, C., Walsh, S., Saltukoglu, D., Tay, T. L., Prinz, M., Palme, K., Simons, M., Diester, I., Brox, T. & Ronneberger, O. (2019). U-Net: Deep learning for cell counting, detection, and morphometry. Nature Methods, 16(1), 67–70. https://doi.org/10.1038/s41592-018-0261-2

  42. Dong, H., Yang, G., Liu, F., Mo, Y., & Guo, Y. (2017). Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In Medical image understanding and analysis (Vol. 723, pp. 506–517). https://doi.org/10.1007/978-3-319-60964-5_44

  43. Karabağ, C., Verhoeven, J., Miller, N. R., & Reyes-Aldasoro, C. C. (2019). Texture segmentation: An objective comparison between five traditional algorithms and a deep-learning U-Net architecture. Applied Sciences, 9(18), 3900. https://doi.org/10.3390/app9183900

    Article  Google Scholar 

  44. Tammina, S. (2019). Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. International Journal of Scientific and Research Publications (IJSRP), 9(10), p9420. https://doi.org/10.29322/IJSRP.9.10.2019.p9420

    Article  Google Scholar 

  45. Nash, W., Drummond, T., & Birbilis, N. (2018). A review of deep learning in the study of materials degradation. NPJ Materials Degradation, 2(1), 37. https://doi.org/10.1038/s41529-018-0058-x

    Article  Google Scholar 

  46. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  Google Scholar 

  47. Abualigah, L., & Diabat, A. (2021). Advances in Sine Cosine algorithm: A comprehensive survey. Artificial Intelligence Review, 54(4), 2567–2608. https://doi.org/10.1007/s10462-020-09909-3

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Director, Institute of Advanced Study in Science and Technology, Guwahati for providing us with the platform to perform our research. We convey our sincere thanks to Shabnam Ahmed, GNRC, Dispur for her time and support during the clinical assessment. We are also thankful to Dr Basanta K. Baishya and Dr Inamul Haque, GNRC for providing us with the medical data and Dr Anup Kumar Das, Ayursundra Pvt. Ltd for performing the staining of our slides.

Funding

The research is supported by the Institute of Advanced Study in Science and Technology, An Autonomous Institute under DST, govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

DD performed the experiments and analysis part and also the writing of the paper, LBM was behind the conceptualization of the idea and equally contributed towards the drafting of the paper.

Corresponding author

Correspondence to Lipi B. Mahanta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Permission for the study was given by the ethical bodies of both the participating institutions under IASST: Registration number ECR/248/Indt/AS/2015 of Rule 122DD, Drugs and Cosmetics Rule, 1945 of India and GMCH: MC/190/2007/pt-1/E-C/32 dated 30.5.2017.

Consent to Participate

Yes, all authors.

Consent to Publication

Yes, all authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Mahanta, L.B. A Comparative Assessment of Different Approaches of Segmentation and Classification Methods on Childhood Medulloblastoma Images. J. Med. Biol. Eng. 41, 379–392 (2021). https://doi.org/10.1007/s40846-021-00612-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-021-00612-4

Keywords

Navigation