Skip to main content
Log in

Reliability and Validity of a Mobile Device for Assessing Head Control Ability

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Head control ability assessed by the cervicocephalic kinesthetic sensibility test has been widely used as an important indicator for the diagnosis or treatment of cervical disorders. However, a reliable and handy device to measure head control has not been developed. This study aimed to compare the capability to quantify the cervicocephalic kinesthetic sensibility between an ultrasound-based motion capture system and an inertial measurement unit-based (IMU-based) mobile device with the ultimate goal of developing a clinically-useful assessment tool.

Methods

Thirty-five young healthy volunteers were recruited in this study. The subjects were asked to perform the clinical cervicocephalic kinesthetic sensibility test in a head-to-neutral reposition procedure. The maximal range of motion and the reposition test in the cervical flexion, extension, right rotation, and left rotation directions were analyzed. After 5–7 days, the experimental procedure was repeated for the between-day retest measurement.

Results

No significant differences in cervical maximal range of motion and head reposition errors between the two devices were found. The intra-rater reliability of both ranged from good to excellent for the within-day and between-day measurements. The correlation between the two devices was also high, with r-values higher than 0.7 in all movement directions.

Conclusions

The IMU-based mobile device shows the potential to be a reliable and feasible head assessment device. Further study is warranted to extend its applications for clinical examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Horak, F. B. (2006). Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing, 35(Suppl 2), 7–11. https://doi.org/10.1093/ageing/afl077

    Article  Google Scholar 

  2. Raymond, F., Lussier, B., Dugas, F., Charbonneau, M., Croteau, F., Kennedy, C., et al. (2018). Using portable force plates to assess vertical jump performance: A metrological appraisal. Sports (Basel). https://doi.org/10.3390/sports6040149

    Article  Google Scholar 

  3. Varalta, V., Munari, D., Pertile, L., Fonte, C., Vallies, G., Chemello, E., et al. (2019). Effects of neck taping in the treatment of hemispatial neglect in chronic stroke patients: A pilot, single blind, randomized controlled trial. Medicina. https://doi.org/10.3390/medicina55040108

    Article  Google Scholar 

  4. Rix, G. D., & Bagust, J. (2001). Cervicocephalic kinesthetic sensibility in patients with chronic, nontraumatic cervical spine pain. Archives of Physical Medicine and Rehabilitation, 82(7), 911–919. https://doi.org/10.1053/apmr.2001.23300

    Article  Google Scholar 

  5. Cheng, C. H., Chien, A., Hsu, W. L., Lai, D. M., Wang, S. F., & Wang, J. L. (2016). Identification of head control deficits following anterior cervical discectomy and fusion in patients with cervical spondylotic myelopathy. European Spine Journal, 25(6), 1855–1860. https://doi.org/10.1007/s00586-015-4368-1

    Article  Google Scholar 

  6. Lee, H. Y., Wang, J. D., Yao, G., & Wang, S. F. (2008). Association between cervicocephalic kinesthetic sensibility and frequency of subclinical neck pain. Manual Therapy, 13(5), 419–425. https://doi.org/10.1016/j.math.2007.04.001

    Article  Google Scholar 

  7. Garcia-Perez-Juana, D., Fernandez-de-Las-Penas, C., Arias-Buria, J. L., Cleland, J. A., Plaza-Manzano, G., & Ortega-Santiago, R. (2018). Changes in cervicocephalic kinesthetic sensibility, widespread pressure pain sensitivity, and neck pain after cervical thrust manipulation in patients with chronic mechanical neck pain: A randomized clinical trial. Journal of Manipulative and Physiological Therapeutics, 41(7), 551–560. https://doi.org/10.1016/j.jmpt.2018.02.004

    Article  Google Scholar 

  8. Jordan, K. (2000). Assessment of published reliability studies for cervical spine range-of-motion measurement tools. Journal of Manipulative and Physiological Therapeutics, 23(3), 180–195. https://doi.org/10.1016/s0161-4754(00)90248-3

    Article  Google Scholar 

  9. Cagnie, B., Cools, A., De Loose, V., Cambier, D., & Danneels, L. (2007). Reliability and normative database of the Zebris cervical range-of-motion system in healthy controls with preliminary validation in a group of patients with neck pain. Journal of Manipulative and Physiological Therapeutics, 30(6), 450–455. https://doi.org/10.1016/j.jmpt.2007.05.003

    Article  Google Scholar 

  10. Chen, J., Solinger, A. B., Poncet, J. F., & Lantz, C. A. (1999). Meta-analysis of normative cervical motion. Spine (Phila Pa 1976), 24(15), 1571–1578. https://doi.org/10.1097/00007632-199908010-00011.

    Article  Google Scholar 

  11. Malmstrom, E. M., Karlberg, M., Melander, A., & Magnusson, M. (2003). Zebris versus Myrin: A comparative study between a three-dimensional ultrasound movement analysis and an inclinometer/compass method: Intradevice reliability, concurrent validity, intertester comparison, intratester reliability, and intraindividual variability. Spine (Phila Pa 1976), 28(21), E433–E440. https://doi.org/10.1097/01.BRS.0000090840.45802.D4

    Article  Google Scholar 

  12. Roren, A., Mayoux-Benhamou, M. A., Fayad, F., Poiraudeau, S., Lantz, D., & Revel, M. (2009). Comparison of visual and ultrasound based techniques to measure head repositioning in healthy and neck-pain subjects. Manual Therapy, 14(3), 270–277. https://doi.org/10.1016/j.math.2008.03.002

    Article  Google Scholar 

  13. Wright, W. G., McDevitt, J., Tierney, R., Haran, F. J., Appiah-Kubi, K. O., & Dumont, A. (2017). Assessing subacute mild traumatic brain injury with a portable virtual reality balance device. Disability and Rehabilitation, 39(15), 1564–1572. https://doi.org/10.1080/09638288.2016.1226432

    Article  Google Scholar 

  14. Dasenbrock, L., Heinks, A., Schwenk, M., & Bauer, J. M. (2016). Technology-based measurements for screening, monitoring and preventing frailty. Zeitschrift für Gerontologie und Geriatrie, 49(7), 581–595. https://doi.org/10.1007/s00391-016-1129-7.

    Article  Google Scholar 

  15. Cho, Y.-S., Jang, S.-H., Cho, J.-S., Kim, M.-J., Lee, H. D., Lee, S. Y., et al. (2018). Evaluation of validity and reliability of inertial measurement unit-based gait analysis systems. Annals of Rehabilitation Medicine, 42(6), 872–883. https://doi.org/10.5535/arm.2018.42.6.872

    Article  Google Scholar 

  16. Tousignant-Laflamme, Y., Boutin, N., Dion, A. M., & Vallee, C. A. (2013). Reliability and criterion validity of two applications of the iPhone to measure cervical range of motion in healthy participants. Journal of NeuroEngineering and Rehabilitation, 10(1), 69. https://doi.org/10.1186/1743-0003-10-69

    Article  Google Scholar 

  17. Lee, B.-C., Kim, J., Chen, S., & Sienko, K. H. (2012). Cell phone based balance trainer. Journal of NeuroEngineering and Rehabilitation, 9(1), 10. https://doi.org/10.1186/1743-0003-9-10.

    Article  Google Scholar 

  18. Shin, S. H., Ro du, H., Lee, O. S., Oh, J. H., & Kim, S. H. (2012). Within-day reliability of shoulder range of motion measurement with a smartphone. Manual Therapy, 17(4), 298–304. https://doi.org/10.1016/j.math.2012.02.010

    Article  Google Scholar 

  19. Haley, S. M., & Fragala-Pinkham, M. A. (2006). Interpreting change scores of tests and measures used in physical therapy. Physical Therapy, 86(5), 735–743. https://doi.org/10.1093/ptj/86.5.735

    Article  Google Scholar 

  20. Alahmari, K., Reddy, R. S., Silvian, P., Ahmad, I., Nagaraj, V., & Mahtab, M. (2017). Intra- and inter-rater reliability of neutral head position and target head position tests in patients with and without neck pain. The Brazilian Journal of Physical Therapy, 21(4), 259–267. https://doi.org/10.1016/j.bjpt.2017.05.003

    Article  Google Scholar 

  21. Patwardhan, A. G., Havey, R. M., Khayatzadeh, S., Muriuki, M. G., Voronov, L. I., Carandang, G., et al. (2015). Postural consequences of cervical sagittal imbalance. Spine, 40(11), 783–792. https://doi.org/10.1097/brs.0000000000000877

    Article  Google Scholar 

  22. Hsu, W. L., Chen, C. P., Nikkhoo, M., Lin, C. F., Ching, C. T., Niu, C. C., et al. (2020). Fatigue changes neck muscle control and deteriorates postural stability during arm movement perturbations in patients with chronic neck pain. Spine Journal, 20(4), 530–537. https://doi.org/10.1016/j.spinee.2019.10.016

    Article  Google Scholar 

  23. Armstrong, B., McNair, P., & Taylor, D. (2008). Head and neck position sense. Sports Medecine, 38(2), 101–117. https://doi.org/10.2165/00007256-200838020-00002

    Article  Google Scholar 

  24. Fasold, O., Heinau, J., Trenner, M. U., Villringer, A., & Wenzel, R. (2008). Proprioceptive head posture-related processing in human polysensory cortical areas. Neuroimage, 40(3), 1232–1242. https://doi.org/10.1016/j.neuroimage.2007.12.060.

    Article  Google Scholar 

  25. Teng, C. C., Chai, H., Lai, D. M., & Wang, S. F. (2007). Cervicocephalic kinesthetic sensibility in young and middle-aged adults with or without a history of mild neck pain. Manual Therapy, 12(1), 22–28. https://doi.org/10.1016/j.math.2006.02.003

    Article  Google Scholar 

  26. Pinsault, N., Vuillerme, N., & Pavan, P. (2008). Cervicocephalic relocation test to the neutral head position: Assessment in bilateral labyrinthine-defective and chronic, nontraumatic neck pain patients. Archives of Physical Medicine and Rehabilitation, 89(12), 2375–2378. https://doi.org/10.1016/j.apmr.2008.06.009

    Article  Google Scholar 

  27. Pinsault, N., Fleury, A., Virone, G., Bouvier, B., Vaillant, J., & Vuillerme, N. (2008). Test–retest reliability of cervicocephalic relocation test to neutral head position. Physiotherapy: Theory and Practice, 24(5), 380–391. https://doi.org/10.1080/09593980701884824

    Article  Google Scholar 

  28. Sjölander, P., Michaelson, P., Jaric, S., & Djupsjöbacka, M. (2008). Sensorimotor disturbances in chronic neck pain—Range of motion, peak velocity, smoothness of movement, and repositioning acuity. Manual Therapy, 13(2), 122–131. https://doi.org/10.1016/j.math.2006.10.002.

    Article  Google Scholar 

  29. Steinhubl, S. R., Muse, E. D., & Topol, E. J. (2015). The emerging field of mobile health. Science Translational Medicine, 7(283), 283rv283. https://doi.org/10.1126/scitranslmed.aaa3487

    Article  Google Scholar 

  30. Madhushri, P., Dzhagaryan, A., Jovanov, E., & Milenkovic, A. (2016). An mHealth tool suite for mobility assessment. Information, 7(3), 47. https://doi.org/10.3390/info7030047

    Article  Google Scholar 

  31. Aroganam, G., Manivannan, N., & Harrison, D. (2019). Review on wearable technology sensors used in consumer sport applications. Sensors (Basel, Switzerland). https://doi.org/10.3390/s19091983

    Article  Google Scholar 

  32. Quek, J., Brauer, S. G., Treleaven, J., Pua, Y. H., Mentiplay, B., & Clark, R. A. (2014). Validity and intra-rater reliability of an android phone application to measure cervical range-of-motion. Journal of NeuroEngineering and Rehabilitation, 11, 65. https://doi.org/10.1186/1743-0003-11-65

    Article  Google Scholar 

  33. Huygelier, H., Schraepen, B., van Ee, R., Abeele, V., & Gillebert, C. R. (2019). Acceptance of immersive head-mounted virtual reality in older adults. Scientific Reports, 9(1), 4519. https://doi.org/10.1038/s41598-019-41200-6

    Article  Google Scholar 

  34. Lin, H. T., Li, Y. I., Hu, W. P., Huang, C. C., & Du, Y. C. (2019). A scoping review of the efficacy of virtual reality and exergaming on patients of musculoskeletal system disorder. Journal of Clinical Medicine. https://doi.org/10.3390/jcm8060791

    Article  Google Scholar 

  35. Lee, H. Y., Teng, C. C., Chai, H. M., & Wang, S. F. (2006). Test–retest reliability of cervicocephalic kinesthetic sensibility in three cardinal planes. Manual Therapy, 11(1), 61–68. https://doi.org/10.1016/j.math.2005.03.008

    Article  Google Scholar 

  36. Pourahmadi, M. R., Bagheri, R., Taghipour, M., Takamjani, I. E., Sarrafzadeh, J., & Mohseni-Bandpei, M. A. (2018). A new iPhone application for measuring active craniocervical range of motion in patients with non-specific neck pain: A reliability and validity study. Spine Journal, 18(3), 447–457. https://doi.org/10.1016/j.spinee.2017.08.229

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Ministry of Science and Technology of Taiwan (107-2221-E-182-018-MY3), the Healthy Aging Research Center (EMRPD1H0391 and EMRPD1H0551), and the Chang Gung Memorial Hospital Research Program (CRRPG3H0062 and CMRPD1J0151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hsiu Cheng.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikkhoo, M., Niu, CC., Fu, CJ. et al. Reliability and Validity of a Mobile Device for Assessing Head Control Ability. J. Med. Biol. Eng. 41, 45–52 (2021). https://doi.org/10.1007/s40846-020-00577-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-020-00577-w

Keywords

Navigation