Skip to main content
Log in

Bleeding and Tumor Detection for Capsule Endoscopy Images Using Improved Geometric Feature

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

This paper presents a method for detecting bleeding and tumors within capsule endoscopy (CE) images. Because CE can be used for visual, non-invasive examinations of the small bowel, it has recently become widely used. However, as a capsule progresses along the gastrointestinal tract, it collects vast quantities of images that make diagnosis a very time-consuming task. To address this problem, many computational approaches for anomaly detection have been proposed. Common to most approaches is the belief that color, texture, and shape are the most promising features for detecting anomalies within CE images. However, given that the requirements for each type of feature vary according to the anomaly, generally, it is essential to apply a complicated combination of techniques for multiple-feature extraction. In this study, in order to realize a scheme that covers the features of color, texture, and shape and can be applied to lesion areas of various sizes, a geometric image feature called local-contrast-enhanced higher-order local auto-correlation (LCE-HLAC) is proposed. Moreover, although the HSV color space is generally regarded as being appropriate for the analysis of CE images, imbalances in the distributions of utilized hue components limit discriminatory performance for normal and anomalous images. Accordingly, an image pre-processing method that uses a non-linear conversion model for the HSV color space is also proposed. Anomaly detection is implemented using a support vector machine classifier. The results of experiments, conducted with normal, bleeding, and tumor images obtained from 28 patients, demonstrate both the feasibility and superiority of the proposed method for both bleeding and tumor detection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. International Agency for Research on Cancer, World Cancer Factsheet 2012, 2013.

  2. University of Rochester Medical Center, “Digestive diagnostic procedures,” http://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=85&ContentID=P00364. Accessed 24 Nov 2015.

  3. Xynopoulos, D., Mihas, A. A., Paraskevas, E., Dimitroulopoulos, D., Heuman, D. M., & Mihas, A. A. (2002). Small bowel tumors. Annals of Gastroenterology, 15, 18–35.

    Google Scholar 

  4. Rey, J.-F., Gay, G., Kruse, A., & Lambert, R. (2004). ESGE guideline for video capsule endoscopy. Endoscopy, 36, 656–658.

    Article  Google Scholar 

  5. Hara, A. K., Leighton, J. A., Heigh, R. I., Sharma, V. K., Silva, A. C., De Petris, G., et al. (2006). Crohn disease of the small bowel: Preliminary comparison among CT enterography, capsule endoscopy, small-bowel follow-through, and ileoscopy. Radiology, 238, 128–134.

    Article  Google Scholar 

  6. Doherty, G. A., Moss, A. C., & Cheifetz, A. S. (2011). Capsule endoscopy for small-bowel evaluation in Crohn’s disease. Gastrointestinal Endoscopy, 74, 167–175.

    Article  Google Scholar 

  7. Delvaux, M., & Gay, G. (2008). Capsule endoscopy: Techniques and indications. Best Practice & Research Clinical Gastroenterology, 22, 813–837.

    Article  Google Scholar 

  8. Yagi, Y., Vu, H., Echigo, T., Sagawa, R., Yagi, K., Shiba, M., et al. (2007). A diagnosis support system for capsule endoscopy. Inflammopharmacology, 15, 78–83.

    Article  Google Scholar 

  9. Gan, T., Wu, J. C., Rao, N. N., Chen, T., & Liu, B. (2008). A feasibility trial of computer-aided diagnosis for enteric lesions in capsule endoscopy. World Journal of Gastroenterology, 14, 6929–6935.

    Article  Google Scholar 

  10. Signorelli, C., Villa, F., Rondonotti, E., Abbiati, C., Beccari, G., & de Franchis, R. (2005). Sensitivity and specificity of the suspected blood identification system in video capsule endoscopy. Endoscopy, 37, 1170–1173.

    Article  Google Scholar 

  11. Penna, B., Tillo, T., Grangetto, M., Magli, E., & Olmo, G. (2009). A technique for blood detection in wireless capsule endoscopy images. In Proceedings of European Signal Processing Conference (pp. 1865–1868).

  12. Lau, P. Y. (2007). Detection of bleeding patterns in WCE video using multiple features. In Proceedings of IEEE International Conference on Engineering in Medicine and Biology Society (pp. 5601–5604).

  13. Al-Rahayfeh, A. A., & Abuzneid, A. A. (2010). Detection of bleeding in wireless capsule endoscopy images using range ratio color. International Journal of Multimedia and Its Applications, 2(2), 1–10.

    Article  Google Scholar 

  14. Li, B., & Meng, M. Q. (2009). Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments. Computers in Biology and Medicine, 39, 141–147.

    Article  Google Scholar 

  15. Li, B., & Meng, M. Q. (2009). Computer aided detection of bleeding regions for capsule endoscopy images. IEEE Transactions on Biomedical Engineering, 56, 1032–1039.

    Article  Google Scholar 

  16. Barbosa, D. J., Ramos, J., & Lima, C. S. (2008). Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform. In Proceedings of IEEE International Conference on Engineering in Medicine and Biology Society (pp. 3012–3015).

  17. Li, B., & Meng, M. Q. (2009). Texture analysis for ulcer detection in capsule endoscopy images. Image and Vision Computing, 27, 1336–1342.

    Article  Google Scholar 

  18. Li, B., & Meng, M. Q. (2012). Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection. The IEEE Transactions on Information Technology in Biomedicine, 16, 323–329.

    Article  Google Scholar 

  19. Karkanis, S. A., Iakovidis, D. K., Maroulis, D. E., Karras, D. A., & Tzivras, M. (2003). Computer-aided tumor detection in endoscopic video using color wavelet features. The IEEE Transactions on Information Technology in Biomedicine, 7, 141–152.

    Article  Google Scholar 

  20. Hwang, S., & Celebi M. E. (2010). Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 678–681).

  21. Lee, J., Oh, J. H., Shah, S. K., Yuan, X., & Tang, S. J. (2007). Automatic classification of digestive organs in wireless capsule endoscopy videos. In Proceedings of ACM Symposium on Applied computing (pp. 1041–1045).

  22. Coimbra, M. T., & Cunha, J. P. S. (2006). MPEG-7 visual descriptors-contributions for automated feature extraction in capsule endoscopy. IEEE Transactions on Circuits and Systems for Video Technology, 16, 628–637.

    Article  Google Scholar 

  23. Szczypiński, P., Klepaczko, A., Pazurek, M., & Daniel, P. (2014). Texture and color based image segmentation and pathology detection in capsule endoscopy videos. Computer Methods and Programs in Biomedicine, 113, 396–411.

    Article  Google Scholar 

  24. Szczypiński, P., Strzelecki, M., Materka, A., & Klepaczko, A. (2009). Mazda—A software package for image texture analysis. Computer Methods and Programs in Biomedicine, 94, 66–76.

    Article  Google Scholar 

  25. Hu, E., Nosato, H., Sakanashi, H., & Masahiro, M. (2012). Anomaly detection for capsule endoscopy images using higher-order local auto correlation features. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (pp. 2289–2293).

  26. Hu, E., Nosato, H., Sakanashi, H., & Masahiro, M. (2013). A modified anomaly detection method for capsule endoscopy images using non-linear color conversion and higher-order local auto-correlation (HLAC). In Proceedings of IEEE International Conference on Engineering in Medicine and Biology Society (pp. 5477–5480).

  27. Otsu, N., & Kurita, T., (1988). A new scheme for practical flexible and intelligent vision systems. In Proceedings of IAPR Workshop on Computer Vision (pp. 431–435).

  28. Kobayashi, T., Hosaka, T., Mimura, S., Hayashi, T., & Otsu, N. (2008). HLAC approach to automatic object counting. In Proceedings of Bio-inspired, Learning and Intelligent Systems for Security (pp. 40–45).

  29. Nosato, H., Kurihara, T., Sakanashi, H., Murakawa, M., Kobayashi, T., Furuya, T., et al. (2011). An extended method of higher-order local autocorrelation feature extraction for classification of histopathological images. IPSJ Transactions on Computer Vision and Applications, 3, 211–221.

    Article  Google Scholar 

  30. Qu, J., Nosato, H., Sakanashi, H., Terai, K., & Hiruta, N. (2012). Cancer detection from pathological images using higher-order local autocorrelation feature. In Proceedings of IEEE International Conference on Signal Processing (pp. 1198–1201).

  31. Mimura, S., Itoh, K., Kobayashi, T., Takigawa, T., Tajima, A., Sawamura, A., & Otsu, N. (2008). The cow gait recognition using CHLAC. In Proceedings of Bio-inspired, Learning and Intelligent Systems for Security (pp. 56–57).

  32. Li, C. H., & Yuen, P. C. (2000). Regularized color clustering in medical image database. IEEE Transactions on Medical Imaging, 19, 1150–1155.

    Article  Google Scholar 

  33. Mete, M. (2008). Color analysis. Delineation of malignant areas in histological images of head-neck cancer (pp. 28–31). Little Rock: University of Arkansas.

    Google Scholar 

  34. Vapnik, V. N. (1998). Statislical Learning Theory. NewYork: Wiley.

    Google Scholar 

  35. Onoda, T. (2001). Summary of support vector machine. Operations Research, 225–230.

  36. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). The kernel trick. Numerical recipes: The art of scientific computing (3rd ed., pp. 889–892). New York: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erzhong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, E., Sakanashi, H., Nosato, H. et al. Bleeding and Tumor Detection for Capsule Endoscopy Images Using Improved Geometric Feature. J. Med. Biol. Eng. 36, 344–356 (2016). https://doi.org/10.1007/s40846-016-0138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0138-8

Keywords

Navigation