Skip to main content
Log in

Clinical Pedicle Screw Insertion Trials and System Improvement of C-arm Image Navigation System

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

C-arm-image-assisted navigation systems for orthopedic surgery have been applied clinically for several years. Pedicle screw implantation is one of the important applications. A precise definition of a C-arm X-ray projection model is the key requirement for a C-arm-assisted navigation system. This study proposes using a high-pass filter to extract the contour of large markers of the image calibrator and an adaptive threshold method to segment images of small markers, thus improving the overall recognition rate of markers and enhancing the robustness of image calibration. A method for time synchronization of X-ray imaging and the detection of a patient’s lumbar position data for respiration compensation is also proposed. Positioning accuracy evaluation of the developed C-arm-assisted navigation system was carried out clinically. The results show that the mean positioning error is 2.409 mm and that the mean direction error is 1.449°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mobbs, R. J., Sivabalan, P., & Li, J. (2012). Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies. Journal of Clinical Neuroscience, 19, 829–835.

    Article  Google Scholar 

  2. Amiot, L. P., Lang, K., Putzier, M., Zippel, H., & Labelle, H. (2000). Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine, 25, 606–614.

    Article  Google Scholar 

  3. Gebhard, F., Weidner, A., Liener, U. C., Stockle, U., & Arand, M. (2004). Navigation at the spine. Injury, 35, 35–45.

    Article  Google Scholar 

  4. Kamimura, M., Ebara, S., Itoh, H., Tateiwa, Y., Kinoshita, T., & Takaoka, K. (1999). Accurate pedicle screw insertion under the control of a computer-assisted image guiding system: Laboratory test and clinical study. Journal of Orthopaedic Science, 4, 197–206.

    Article  Google Scholar 

  5. Liu, Y. J., Tian, W., Liu, B., Li, Q., Hu, L., Li, Z. Y., et al. (2010). Comparison of the clinical accuracy of cervical (c2-c7) pedicle screw insertion assisted by fluoroscopy, computed tomography-based navigation, and intraoperative three-dimensional c-arm navigation. Chinese Medical Journal, 123, 2995–2998.

    Google Scholar 

  6. Waschke, A., Walter, J., Duenisch, P., Reichart, R., Kalff, R., & Ewald, C. (2013). Ct-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: Single center experience of 4,500 screws. European Spine Journal, 22, 654–660.

    Article  Google Scholar 

  7. Fu, T. S., Chen, L. H., Wong, C. B., Lai, P. L., Tsai, T. T., Niu, C. C., & Chen, W. J. (2004). Computer-assisted fluoroscopic navigation of pedicle screw insertion: An in vivo feasibility study. Acta Orthopaedica, 75, 730–735.

    Article  Google Scholar 

  8. Yang, C. D., Chen, Y. W., Tseng, C. S., Ho, H. J., Wu, C. C., & Wang, K. W. (2012). Non-invasive fluoroscopy-based image-guided surgery reduces radiation exposure for vertebral compression fractures: A preliminary survey. Formosan Journal of Surgery, 45, 12–19.

    Article  Google Scholar 

  9. Hufner, T., Kendoff, D., Citak, M., Geerling, J., & Krettek, C. (2006). Precision in orthopaedic computer navigation. Orthopade, 35, 1043–1055.

    Article  Google Scholar 

  10. Nowitzke, A., Wood, M., & Cooney, K. (2008). Improving accuracy and reducing errors in spinal surgery–a new technique for thoracolumbar-level localization, using computer-assisted image guidance. Spine Journal, 8, 597–604.

    Article  Google Scholar 

  11. Sclafani, J. A., Regev, G. J., Webb, J., Garfin, S. R., & Kim, C. W. (2011). Use of a quantitative pedicle screw accuracy system to assess new technology: Initial studies on o-arm navigation and its effect on the learning curve of percutaneous pedicle screw insertion. SAS Journal, 5, 57–62.

    Article  Google Scholar 

  12. Rampersaud, Y. R., Foley, K. T., Shen, A. C., Williams, S., & Solomito, M. (2000). Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine, 25, 2637–2645.

    Article  Google Scholar 

  13. Yang, B. P., Wahl, M. M., & Idler, C. S. (2012). Percutaneous lumbar pedicle screw placement aided by computer-assisted fluoroscopy-based navigation: Perioperative results of a prospective, comparative, multicenter study. Spine, 37, 2055–2060.

    Article  Google Scholar 

  14. Gelalis, I. D., Paschos, N. K., Pakos, E. E., Politis, A. N., Arnaoutoglou, C. M., Karageorgos, A. C., et al. (2012). Accuracy of pedicle screw placement: A systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. European Spine Journal, 21, 247–255.

    Article  Google Scholar 

  15. Eyke, J. C., Roesch, W., & Whitecloud, T. S. (2002). Computer-assisted virtual fluoroscopy. The University of Pennsylvania Orthopaedic Journal, 15, 53–59.

    Google Scholar 

  16. Wu, C. C., Wang, S. M., Yen, C. H., & Tseng, C. S. (2003). Development of c-arm image-assisted navigation system for orthopedic operation. Annual Symposium on Medical Engineering, 20(6), 857–881.

    Google Scholar 

  17. He, Y. Y. (2005). C-arm based surgical navigation system for intertrochanteric fracture. Thesis in graduate institute of mechanical engineering, National Central University.

  18. Fan, C. W. (2007). C-arm-based navigation system for hip resurfacing arthroplasty. Thesis in graduate institute of mechanical engineering, National Central University.

  19. Wang, S. M. (2002). C-arm image-assisted planning and navigation system for orthopedic operation. Thesis in graduate institute of mechanical engineering, National Central University.

  20. Yaniv, Z., Livyatan, H., & Joskowicz, L. (2002). Robust automatic c-arm calibration for fluoroscopy-based navigation: A practical approach. In T. Dohi & R. Kikinis (Eds.), Medical image computing and computer-assisted intervention-MICCAI 2002 lecture notes in computer science (pp. 60–68). Berlin: Springer.

    Google Scholar 

  21. Zhang, X., & Zheng, G. (2009). Robust automatic detection and removal of fiducial projections in fluoroscopy images: An integrated solution. Medical Engineering & Physics, 31, 571–580.

    Article  Google Scholar 

  22. Penney, G. P., Weese, J., Little, J. A., Desmedt, P., Hill, D. L., & Hawkes, D. J. (1998). A comparison of similarity measures for use in 2-d-3-d medical image registration. IEEE Transactions on Medical Imaging, 17, 586–595.

    Article  Google Scholar 

  23. Cerciello, T., Romano, M., Bifulco, P., Cesarelli, M., & Allen, R. (2011). Advanced template matching method for estimation of intervertebral kinematics of lumbar spine. Medical Engineering & Physics, 33, 1293–1302.

    Article  Google Scholar 

  24. Kim, M., Wu, J., Peters, J., Chung, H., & Samant, S. S. (2009). Evaluation of similarity measures for use in the intensity-based rigid 2d-3d registration for patient positioning in radiotherapy. Medical Physics, 36, 5391–5403.

    Article  Google Scholar 

  25. Bifulco, P., Cerciello, T., Cesarelli, M., & Fratini, A. (2012). A comparison of denoising methods for X-ray fluoroscopic images. Biomedical Signal Processing and Control, 7, 550–559.

    Article  Google Scholar 

  26. Cesarelli, M., Bifulco, P., Cerciello, T., Romano, M., & Paura, L. (2013). X-ray fluoroscopy noise modeling for filter design. International Journal of Computer Assisted Radiology and Surgery, 8, 269–278.

    Article  Google Scholar 

  27. Johnson, H. J., & Christensen, G. E. (2002). Consistent landmark and intensity-based image registration. IEEE Transactions on Medical Imaging, 21, 450–461.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Shiow Tseng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CJ., Yu, CH., Lin, GL. et al. Clinical Pedicle Screw Insertion Trials and System Improvement of C-arm Image Navigation System. J. Med. Biol. Eng. 36, 44–52 (2016). https://doi.org/10.1007/s40846-016-0107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0107-2

Keywords

Navigation