Skip to main content
Log in

Scapular Motion Tracking Using Acromion Skin Marker Cluster: In Vitro Accuracy Assessment

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Several studies have recently investigated how the implementations of acromion marker clusters (AMCs) method and stereo-photogrammetry affect the estimates of scapula kinematics. However, in the large majority of these studies, the accuracy assessment of the scapular kinematics obtained with AMCs was carried out through a comparative evaluation using a scapula locator that is prone to error. The present study assesses AMC accuracy based on best practice recommendations, both with single and double anatomical calibration implementations, during several passive shoulder movements. Experiments were carried out on three cadaveric specimens. The scapula motion was acquired with a stereo-photogrammetric system using intra-cortical pins. When the scapula kinematics was estimated using an AMC combined with a single anatomical calibration, the accuracy was highly dependent on the specimen and the type of motion (maximum errors between –6.2° and 44.8°) and the scapular motion was generally overestimated. Moreover, with this implementation, scapular orientation errors increased for shoulder configurations distant from the reference shoulder configuration chosen for the calibration procedure. The double calibration implementation greatly improved the estimate of the scapular kinematics for all specimens and types of motion (maximum errors between –1.0° and 14.2°). The double anatomical calibration implementation should be preferred since it reduces the kinematics errors to levels which are acceptable in most clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Myers, J. B., Laudner, K. G., Pasquale, M. R., Bradley, J. P., & Lephart, S. M. (2005). Scapular position and orientation in throwing athletes. The American Journal of Sports Medicine, 33, 263–271.

    Article  Google Scholar 

  2. Forthomme, B., Crielaard, J. M., & Croisier, J. L. (2008). Scapular positioning in athlete’s shoulder: Particularities, clinical measurements and implications. Sports Medicine (Auckland, N. Z.), 38, 369–386.

    Article  Google Scholar 

  3. Miyashita, K., Kobayashi, H., Koshida, S., & Urabe, Y. (2010). Glenohumeral, scapular, and thoracic angles at maximum shoulder external rotation in throwing. The American Journal of Sports Medicine, 38, 363–368.

    Article  Google Scholar 

  4. Ludewig, P. M., Phadke, V., Braman, J. P., Hassett, D. R., Cieminski, C. J., & LaPrade, R. F. (2009). Motion of the shoulder complex during multiplanar humeral elevation. The Journal of Bone and Joint Surgery, 91, 378–389.

    Article  Google Scholar 

  5. Hill, A. M., Bull, A. M., Dallalana, R. J., Wallace, A. L., & Johnson, G. R. (2007). Glenohumeral motion: Review of measurement techniques. Knee Surgery, Sports Traumatology, Arthroscopy, 15, 1137–1143.

    Article  Google Scholar 

  6. Anglin, C., & Wyss, U. P. (2000). Review of arm motion analyses. Proceedings of the Institution of Mechanical Engineers, Part H, 214, 541–555.

    Article  Google Scholar 

  7. Karduna, A. R., McClure, P. W., Michener, L. A., & Sennett, B. (2000). Dynamic measurements of three-dimensional scapular kinematics: A validation study. Journal of Biomechanical Engineering, 123, 184–190.

    Article  Google Scholar 

  8. Meskers, C. G., van de Sande, M. A., & de Groot, J. H. (2007). Comparison between tripod and skin-fixed recording of scapular motion. Journal of Biomechanics, 40, 941–946.

    Article  Google Scholar 

  9. Fayad, F., Hoffmann, G., Hanneton, S., Yazbeck, C., Lefevre-Colau, M. M., Poiraudeau, S., et al. (2006). 3-D scapular kinematics during arm elevation: Effect of motion velocity. Clinical Biomechanics, 21, 932–941.

    Article  Google Scholar 

  10. Fayad, F., Roby-Brami, A., Yazbeck, C., Hanneton, S., Lefevre-Colau, M. M., Gautheron, V., et al. (2008). Three-dimensional scapular kinematics and scapulohumeral rhythm in patients with glenohumeral osteoarthritis or frozen shoulder. Journal of Biomechanics, 4, 326–332.

    Article  Google Scholar 

  11. McQuade, K. J., & Smidt, G. L. J. (1998). Dynamic scapulohumeral rhythm: The effects of external resistance during elevation of the arm in the scapular plane. Journal of Orthopaedic and Sports Physical Therapy, 27, 125–133.

    Article  Google Scholar 

  12. McCully, S. P., Kumar, N., Lazarus, M. D., & Karduna, A. R. (2005). Internal and external rotation of the shoulder: Effects of plane, end-range determination, and scapular motion. Journal of Shoulder and Elbow Surgery, 14, 602–610.

    Article  Google Scholar 

  13. van Andel, C., van Hutten, K., Eversdijk, M., Veeger, D., & Harlaar, J. (2009). Recording scapular motion using an acromion marker cluster. Gait and Posture, 29, 123–128.

    Article  Google Scholar 

  14. Brochard, S., Lempereur, M., & Remy-Neris, O. (2011). Accuracy and reliability of three methods of recording scapular motion using reflective skin markers. Proceedings of the Institution of Mechanical Engineers, Part H, 225, 100–105.

    Article  Google Scholar 

  15. Brochard, S., Lempereur, M., & Rémy-Néris, O. (2011). Double calibration: An accurate, reliable and easy-to-use method for 3D scapular motion analysis. Journal of Biomechanics, 44, 751–754.

    Article  Google Scholar 

  16. Shaheen, F., Alexander, C. M., & Bull, A. M. (2011). Effects of attachment position and shoulder orientation during calibration on the accuracy of the acromial tracker. Journal of Biomechanics, 44, 1410–1413.

    Article  Google Scholar 

  17. Prinold, J. A., Shaheen, A. F., & Bull, A. M. (2011). Skin-fixed scapula trackers: A comparison of two dynamic methods across a range of calibration positions. Journal of Biomechanics, 44, 2004–2007.

    Article  Google Scholar 

  18. Warner, M. B., Chappell, P. H., & Stokes, M. J. (2012). Measuring scapular kinematics during arm lowering using the acromion marker cluster. Human Movement Science, 31, 386–396.

    Article  Google Scholar 

  19. Bourne, D. A., Choo, A. M., Regan, W. D., Macintyre, D. L., & Oxland, T. R. (2009). A new subject-specific skin correction factor for three-dimensional kinematic analysis of the scapula. Journal of Biomechanical Engineering-T ASME, 131, 121009.

    Article  Google Scholar 

  20. Bourne, D. A., Choo, A. M., Regan, W. D., MacIntyre, D. L., & Oxland, T. R. (2011). The placement of skin surface markers for non invasive measurement of scapular kinematics affects accuracy and reliability. Annals of Biomedical Engineering, 39, 777–785.

    Article  Google Scholar 

  21. Johnson, G. R., Stuart, P. R., & Mitchell, S. (1993). A method for the measurement of 3-dimensional scapular movement. Clinical Biomechanics, 8, 269–273.

    Article  Google Scholar 

  22. Barnett, N. D., Duncan, R. D., & Johnson, G. R. (1999). The measurement of three dimensional scapulohumeral kinematics-a study of reliability. Clinical Biomechanics, 14, 287–290.

    Article  Google Scholar 

  23. Cutti, A. G., & Veeger, H. E. (2009). Shoulder biomechanics: Today’s consensus and tomorrow’s perspectives. Medical and Biological Engineering and Computing, 47, 463–466.

    Article  Google Scholar 

  24. Entezari, V., Trechsel, B. L., Dow, W. A., Stanton, S. K., Rosso, C., Müller, A., et al. (2012). Design and manufacture of a novel system to simulate the biomechanics of basic and pitching shoulder motion using a cadaveric model. Bone and Joint Research, 1, 78–85.

    Article  Google Scholar 

  25. Rosso, C., Müller, A. M., Entezari, V., Dow, W. A., McKenzie, B., Stanton, S. K., et al. (2013). Preliminary evaluation of a robotic apparatus for the analysis of passive glenohumeral joint kinematics. Journal of Orthopaedic Surgery and Research, 8, 24.

    Article  Google Scholar 

  26. Wu, G., van der Helm, F. C., Veeger, H. E., Makhsous, M., Van Roy, P., Anglin, C., et al. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-part II: Shoulder, elbow, wrist and hand. Journal of Biomechanics, 38, 981–992.

  27. Cappozzo, A., Catani, F., Della Croce, U., & Leardini, A. (1995). Position and orientation of bones during movement: Anatomical frame definition and determination. Clinical Biomechanics, 10, 171–178.

  28. Meister, K. (2000). Injuries to the shoulder in the throwing athlete. Part one: Biomechanics/pathophysiology/classification of injury. The American Journal of Sports Medicine, 28, 265–275.

  29. Mueller, A. M., Entezari, V., Rosso, C., McKenzie, B., Hasebrock, A., Cereatti, A., et al. (2013). The effect of simulated scapular winging on glenohumeral joint translations. Journal of Shoulder and Elbow Surgery, 22, 986−992.

  30. Soderkvist, I., & Wedin, P. A. (1993). Determining the movements of the skeleton using well-configured markers. Journal of Biomechanics, 26, 1473–1477.

  31. Meskers, C. G., van der Helm, F. C., & Rozendaal, L. A. (1998). In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. Journal of Biomechanics, 31, 93–96. 

  32. Cappello, A., Cappozzo, A., La Palambora, P. F., Lucchetti, L., & Leardini, A. (1997). Multiple anatomical landmark calibration for optimal bone pose estimation. Human Movement Science, 16, 259–274.

    Article  Google Scholar 

  33. Price, C. I., Franklin, P., Rodgers, H., Curless, R. H., & Johnson, G. R. (2000). Active and passive scapulohumeral movement in healthy persons: A comparison. Archives of Physical Medicine and Rehabilitation, 81, 28–31.

    Article  Google Scholar 

  34. Shaheen, A. F., Alexander, C. M., & Bull, A. M. (2001). Tracking the scapula locator with and without feedback from pressure-sensors: A comparative study. Journal of Biomechanics, 44, 1633–1636.

    Article  Google Scholar 

  35. Della Croce, U., Cappozzo, A., & Kerrigan, D. C. (1999). Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles. Medical and Biological Engineering and Computing, 37, 155–161.

    Article  Google Scholar 

  36. Ebaugh, D. D., McClure, P. W., & Karduna, A. R. (2005). Three-dimensional scapulothoracic motion during active and passive arm elevation. Clinical Biomechanics, 20, 700–709.

    Article  Google Scholar 

  37. Veronda, D. R., & Westmann, R. A. (1970). Mechanical characterization of skin-finite deformations. Journal of Biomechanics, 31, 111–124.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Medical Advisory Committee for Major League Baseball (AJR and AN) and the Department of Orthopaedic Surgery at Beth Israel Deaconess Medical Center, Boston, MA (AN and AJR) for funding this project. They would like to gratefully acknowledge the Swiss National Science Foundation for providing funding to Drs. Claudio Rosso for his work on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cereatti.

Additional information

Andrea Cereatti and Claudio Rosso these authors have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cereatti, A., Rosso, C., Nazarian, A. et al. Scapular Motion Tracking Using Acromion Skin Marker Cluster: In Vitro Accuracy Assessment. J. Med. Biol. Eng. 35, 94–103 (2015). https://doi.org/10.1007/s40846-015-0010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0010-2

Keywords

Navigation