Skip to main content
Log in

Bifunctional sodium compensation of anodes for hybrid sodium-ion capacitors

钠离子电容器负极的双功能补钠研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The low initial Coulombic efficiency (ICE) for the electrodes which stems from electrolyte decomposition and irreversible sodium uptake by the material itself, is one of the reasons limiting the large-scale sodium-ion capacitors (SICs). Here, we report a simple but precise bifunctional pre-sodiation of the Nb2O5 anode (as a typical example) using sodium naphthalene/2-methyltetrahydrofuran as a pre-sodiated agent. The pre-sodiated agent realizes the pre-activation to achieve stable cycling of NaxNb2O5, thus compensating the irreversible Na uptake. Moreover, this process offsets the electrolyte decomposition loss, and facilitates the formation of a robust inorganic-rich solid electrolyte interphase layer. Stable and high-energy SIC devices are achieved by compensating the interphase and bulk sodium loss of Nb2O5 anodes. This work provides new insights into tuning the ICE of sodium-storage electrodes for next-generation and scaled-up applications of SICs.

摘要

电极的首次库伦效率低是限制快充钠离子电容器规模化使用的 原因之一, 这主要源于电解液的不可逆分解以及电极材料造成的不可 逆损失. 我们选取高倍率特性的Nb2O5负极材料作为研究对象, 采用钠 萘/2-甲基-四氢呋喃作为预钠化剂, 发展了一种简单且可精确调控的双 功能预钠化剂, 实现了预活化, 获得了高稳定循环的NaxNb2O5电极, 从 而补偿了钠在材料中的不可逆吸收. 研究发现, 预钠化过程同时抵消了 电解液分解所产生的损失, 有利于在电极/电解液界面形成坚固的富含 无机物的固体电解质界面膜. 通过补偿Nb2O5负极的体相与界面的钠损 失, 构建了稳定且具有高能量密度的钠离子电容器. 本研究为调控储钠 电极的首次库伦效率及其在下一代钠离子电容器中的应用提供了新 方法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334: 928–935

    Article  CAS  Google Scholar 

  2. Weiss M, Ruess R, Kasnatscheew J, et al. Fast charging of lithium-ion batteries: A review of materials aspects. Adv Energy Mater, 2021, 11: 2101126

    Article  CAS  Google Scholar 

  3. Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy, 2019, 4: 540–550

    Article  Google Scholar 

  4. Jiang Y, Liu Z, Guo S, et al. Collaborative compromise of two-dimensional materials in sodium ion capacitors: Mechanisms and designing strategies. J Mater Chem A, 2021, 9: 8129–8159

    Article  CAS  Google Scholar 

  5. Peng H, Han S, Zhao J, et al. 2D heterolayer-structured MoSe2-carbon with fast kinetics for sodium-ion capacitors. Inorg Chem, 2023, 62: 1602–1610

    Article  CAS  Google Scholar 

  6. Diez N, Sevilla M, Fuertes AB. A dual carbon Na-ion capacitor based on polypyrrole-derived carbon nanoparticles. Carbon, 2023, 201: 1126–1136

    Article  CAS  Google Scholar 

  7. Yao T, Wang H, Qin Y, et al. Enhancing pseudocapacitive behavior of MOF-derived TiO2−x@carbon nanocubes via Mo-doping for high-performance sodium-ion capacitors. Compos Part B-Eng, 2023, 253: 110557

    Article  CAS  Google Scholar 

  8. Halder B, Ragul S, Sandhiya S, et al. Flexible solid-state aqueous sodium-ion capacitor using mesoporous self-heteroatom-doped carbon electrodes. ACS Appl Electron Mater, 2023, 5: 470–483

    Article  CAS  Google Scholar 

  9. Yang S, Jiang J, He W, et al. Nitrogen-doped carbon encapsulating Fe7Se8 anode with core-shell structure enables high-performance sodium-ion capacitors. J Colloid Interface Sci, 2023, 630: 144–154

    Article  CAS  Google Scholar 

  10. He H, Sun D, Tang Y, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater, 2019, 23: 233–251

    Article  Google Scholar 

  11. Zhang T, Wang R, He B, et al. Recent advances on pre-sodiation in sodium-ion capacitors: A mini review. Electrochem Commun, 2021, 129: 107090

    Article  CAS  Google Scholar 

  12. Dewar D, Glushenkov AM. Optimisation of sodium-based energy storage cells using pre-sodiation: A perspective on the emerging field. Energy Environ Sci, 2021, 14: 1380–1401

    Article  CAS  Google Scholar 

  13. Gui Q, Ba D, Zhao Z, et al. Synergistic coupling of ether electrolyte and 3D electrode enables titanates with extraordinary coulombic efficiency and rate performance for sodium-ion capacitors. Small Methods, 2019, 3: 1800371

    Article  Google Scholar 

  14. Brady A, Liang K, Vuong VQ, et al. Pre-sodiated Ti3C2Tx MXene structure and behavior as electrode for sodium-ion capacitors. ACS Nano, 2021, 15: 2994–3003

    Article  CAS  Google Scholar 

  15. Liu M, Zhang J, Guo S, et al. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries. ACS Appl Mater Interfaces, 2020, 12: 17620–17627

    Article  CAS  Google Scholar 

  16. Cao Y, Zhang T, Zhong X, et al. A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials. Chem Commun, 2019, 55: 14761–14764

    Article  CAS  Google Scholar 

  17. Liu X, Tan Y, Liu T, et al. A simple electrode-level chemical pre-sodiation route by solution spraying to improve the energy density of sodium-ion batteries. Adv Funct Mater, 2019, 29: 1903795

    Article  CAS  Google Scholar 

  18. Zheng G, Lin Q, Ma J, et al. Ultrafast presodiation of graphene anodes for high-efficiency and high-rate sodium-ion storage. InfoMat, 2021, 3: 1445–1454

    Article  CAS  Google Scholar 

  19. Fang H, Gao S, Ren M, et al. Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries. Angew Chem Int Ed, 2023, 62: e202214717

    Article  CAS  Google Scholar 

  20. Liu M, Yang Z, Shen Y, et al. Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries. J Mater Chem A, 2021, 9: 5639–5647

    Article  CAS  Google Scholar 

  21. Li F, Yu X, Tang K, et al. Chemical presodiation of alloy anodes with improved initial coulombic efficiencies for the advanced sodium-ion batteries. J Appl Electrochem, 2022, 53: 9–18

    Article  Google Scholar 

  22. Longoni G, Fiore M, Kim JH, et al. Co3O4 negative electrode material for rechargeable sodium ion batteries: An investigation of conversion reaction mechanism and morphology-performances correlations. J Power Sources, 2016, 332: 42–50

    Article  CAS  Google Scholar 

  23. Moeez I, Jung HG, Lim HD, et al. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries. ACS Appl Mater Interfaces, 2019, 11: 41394–41401

    Article  CAS  Google Scholar 

  24. Jeżowski P, Chojnacka A, Pan X, et al. Sodium amide as a “zero dead mass” sacrificial material for the pre-sodiation of the negative electrode in sodium-ion capacitors. Electrochim Acta, 2021, 375: 137980

    Article  Google Scholar 

  25. Sun C, Zhang X, Li C, et al. A presodiation strategy with high efficiency by utilizing low-price and eco-friendly Na2CO3 as the sacrificial salt towards high-performance pouch sodium-ion capacitors. J Power Sources, 2021, 515: 230628

    Article  CAS  Google Scholar 

  26. Sun C, Zhang X, Li C, et al. A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. J Energy Chem, 2022, 64: 442–450

    Article  CAS  Google Scholar 

  27. Liu X, Tan Y, Wang W, et al. Ultrafine sodium sulfide clusters confined in carbon nano-polyhedrons as high-efficiency presodiation reagents for sodium-ion batteries. ACS Appl Mater Interfaces, 2021, 13: 27057–27065

    Article  CAS  Google Scholar 

  28. Kim H, Lim E, Jo C, et al. Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy, 2015, 16: 62–70

    Article  CAS  Google Scholar 

  29. Fan L, Li X, Yan B, et al. Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv Energy Mater, 2016, 6: 1502057

    Article  Google Scholar 

  30. Ku JH, Ryu JH, Kim SH, et al. Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode. Adv Funct Mater, 2012, 22: 3658–3664

    Article  CAS  Google Scholar 

  31. Li X, Meng X, Liu J, et al. Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv Funct Mater, 2012, 22: 1647–1654

    Article  CAS  Google Scholar 

  32. Li Y, Sun X, Cheng Z, et al. Mesoporous Cu2−xSe nanocrystals as an ultrahigh-rate and long-lifespan anode material for sodium-ion batteries. Energy Storage Mater, 2019, 22: 275–283

    Article  Google Scholar 

  33. Dong J, He Y, Jiang Y, et al. Intercalation pseudocapacitance of FeVO4·nH2O nanowires anode for high-energy and high-power sodium-ion capacitor. Nano Energy, 2020, 73: 104838

    Article  CAS  Google Scholar 

  34. Han X, Russo PA, Goubard-Bretesché N, et al. Exploiting the condensation reactions of acetophenone to engineer carbon-encapsulated Nb2O5 nanocrystals for high-performance Li and Na energy storage systems. Adv Energy Mater, 2019, 9: 1902813

    Article  CAS  Google Scholar 

  35. Wang X, Li Q, Zhang L, et al. Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid super-capacitors. Adv Mater, 2018, 30: 1800963

    Article  Google Scholar 

  36. Jiang Y, Guo S, Li Y, et al. Rapid microwave synthesis of carbon-bridged Nb2O5 mesocrystals for high-energy and high-power sodium-ion capacitors. J Mater Chem A, 2022, 10: 11470–11476

    Article  CAS  Google Scholar 

  37. Holy NL. Reactions of the radical anions and dianions of aromatic hydrocarbons. Chem Rev, 1974, 74: 243–277

    Article  CAS  Google Scholar 

  38. Qin B, Schiele A, Jusys Z, et al. Highly reversible sodiation of tin in glyme electrolytes: The critical role of the solid electrolyte interphase and its formation mechanism. ACS Appl Mater Interfaces, 2020, 12: 3697–3708

    Article  CAS  Google Scholar 

  39. Eshetu GG, Diemant T, Hekmatfar M, et al. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano Energy, 2019, 55: 327–340

    Article  CAS  Google Scholar 

  40. Zou G, Zhang Q, Fernandez C, et al. Heterogeneous Ti3SiC2@C-containing Na2Ti7O15 architecture for high-performance sodium storage at elevated temperatures. ACS Nano, 2017, 11: 12219–12229

    Article  CAS  Google Scholar 

  41. Xu K, von Cresce A, Lee U. Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir, 2010, 26: 11538–11543

    Article  CAS  Google Scholar 

  42. Zhang W, Sun X, Tang Y, et al. Lowering charge transfer barrier of LiMn2O4via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J Am Chem Soc, 2019, 141: 14038–14042

    Article  CAS  Google Scholar 

  43. Yu M, Lin D, Feng H, et al. Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew Chem Int Ed, 2017, 56: 5454–5459

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52272206, 51972132 and 51772116) and the Program for HUST Academic Frontier Youth Team (2016QYTD04). The authors thank the Analytical and Testing Center of HUST for XRD, SEM, and TEM measurements.

Author information

Authors and Affiliations

Authors

Contributions

Hu X conceived the idea of this work and revised the manuscript. Jiang Y conducted the experiments and data analysis and wrote the manuscript. All authors contributed to the general discussion.

Corresponding author

Correspondence to Xianluo Hu  (胡先罗).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Yingjun Jiang is currently a PhD candidate at the School of Material Science and Engineering at Huazhong University of Science and Technology (HUST) under the supervision of Prof. Xianluo Hu. Her research focuses on the electrode materials for sodium-ion capacitors.

Xianluo Hu is a full professor of materials science and engineering at HUST. He received his PhD from the Chinese University of Hong Kong (CUHK) in 2007 and subsequently worked as a postdoctoral researcher at CUHK and a JSPS postdoctoral fellow at the National Institute of Materials Science (NIMS) of Japan from 2007 to 2009. His current research interest focuses on electrochemical energy-storage devices under extreme conditions.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Guo, S. & Hu, X. Bifunctional sodium compensation of anodes for hybrid sodium-ion capacitors. Sci. China Mater. 66, 3084–3092 (2023). https://doi.org/10.1007/s40843-023-2473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2473-8

Keywords

Navigation