Skip to main content
Log in

Research progress of two-dimensional magnetic materials

二维磁性材料的研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Because of their ultrathin thickness, two-dimensional (2D) materials exhibit unique properties in different fields, such as electronics and catalysis. As one of these materials, a 2D magnet is an ideal platform for fundamental physics research and magnetic device development, making it widely studied. This review provides the details of recent progress of 2D magnetic materials. First, the characterization methods of magnetism are summarized. Then, the categories of 2D magnets and the strategies for regulating 2D magnetism are discussed. Finally, the challenges and opportunities in 2D magnetic material development are pointed out.

Zh

摘要二维材料依靠其超薄的厚度在诸多领域中展现出独特的性能, 如电子学和催化领域. 作为二维材料中的一员, 二维磁性材料是物理学基础研究和磁性器件发展的理想平台. 因此, 二维磁性材料受到了广泛的关注和研究. 本文综述了二维磁性材料的研究进展, 总结了磁性的表征方法, 讨论了常见的二维磁性材料的分类及对二维磁性调控的方法, 并介绍了二维磁性材料的应用. 最后, 展望了二维磁性材料在未来发展中将面临的挑战和机遇.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  2. Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2: 17033

    Article  CAS  Google Scholar 

  3. Lv L, Yang Z, Chen K, et al. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv Energy Mater, 2019, 9: 1803358

    Article  Google Scholar 

  4. Zhang K, Feng Y, Wang F, et al. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J Mater Chem C, 2017, 5: 11992–12022

    Article  CAS  Google Scholar 

  5. Thurakkal S, Zhang X. Recent advances in chemical functionalization of 2D black phosphorous nanosheets. Adv Sci, 2020, 7: 1902359

    Article  CAS  Google Scholar 

  6. Wang Y, Liu L, Ma T, et al. 2D graphitic carbon nitride for energy conversion and storage. Adv Funct Mater, 2021, 31: 2102540

    Article  CAS  Google Scholar 

  7. Xiao X, Song H, Lin S, et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat Commun, 2016, 7: 11296

    Article  CAS  Google Scholar 

  8. Wei Y, Zhang P, Soomro RA, et al. Advances in the synthesis of 2D MXenes. Adv Mater, 2021, 33: 2103148

    Article  CAS  Google Scholar 

  9. Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotech, 2014, 9: 768–779

    Article  CAS  Google Scholar 

  10. Li X, Tao L, Chen Z, et al. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl Phys Rev, 2017, 4: 021306

    Article  Google Scholar 

  11. Deng D, Novoselov KS, Fu Q, et al. Catalysis with two-dimensional materials and their heterostructures. Nat Nanotech, 2016, 11: 218–230

    Article  CAS  Google Scholar 

  12. Zhang X, Hou L, Ciesielski A, et al. 2D materials beyond graphene for high-performance energy storage applications. Adv Energy Mater, 2016, 6: 1600671

    Article  Google Scholar 

  13. Kim J, Lee Y, Kang M, et al. 2D materials for skin-mountable electronic devices. Adv Mater, 2021, 33: 2005858

    Article  CAS  Google Scholar 

  14. An J, Zhao X, Zhang Y, et al. Perspectives of 2D materials for optoelectronic integration. Adv Funct Mater, 2022, 32: 2110119

    Article  CAS  Google Scholar 

  15. Shifa TA, Wang F, Liu Y, et al. Heterostructures based on 2D materials: A versatile platform for efficient catalysis. Adv Mater, 2019, 31: 1804828

    Article  CAS  Google Scholar 

  16. Lin L, Chen J, Liu D, et al. Engineering 2D materials: A viable pathway for improved electrochemical energy storage. Adv Energy Mater, 2020, 10: 2002621

    Article  CAS  Google Scholar 

  17. Hao Q, Dai H, Cai M, et al. 2D magnetic heterostructures and emergent spintronic devices. Adv Elect Mater, 2022, 8: 2200164

    Article  CAS  Google Scholar 

  18. Li H, Ruan S, Zeng YJ. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv Mater, 2019, 31: 1900065

    Article  Google Scholar 

  19. Zhang K, Han S, Lee Y, et al. Gigantic current control of coercive field and magnetic memory based on nanometer-thin ferromagnetic van der Waals Fe3GeTe2. Adv Mater, 2021, 33: 2004110

    Article  CAS  Google Scholar 

  20. Kumari S, Pradhan DK, Pradhan NR, et al. Recent developments on 2D magnetic materials: Challenges and opportunities. emergent mater, 2021, 4: 827–846

    Article  CAS  Google Scholar 

  21. Hossain M, Qin B, Li B, et al. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today, 2022, 42: 101338

    Article  CAS  Google Scholar 

  22. Li W, Qiu X, Lv B, et al. Free-standing 2D ironene with magnetic vortex structure at room temperature. Matter, 2022, 5: 291–301

    Article  CAS  Google Scholar 

  23. Zhang L, Zhou J, Li H, et al. Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications. Appl Phys Rev, 2021, 8: 021308

    Article  CAS  Google Scholar 

  24. Hu J, Luo J, Zheng Y, et al. Magnetic proximity effect at the interface of two-dimensional materials and magnetic oxide insulators. J Alloys Compd, 2022, 911: 164830

    Article  CAS  Google Scholar 

  25. Idzuchi H, Pientka F, Huang KF, et al. Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator. Nat Commun, 2021, 12: 5332

    Article  CAS  Google Scholar 

  26. Hu T, Zhao G, Gao H, et al. Manipulation of valley pseudospin in WSe2/CrI3 heterostructures by the magnetic proximity effect. Phys Rev B, 2020, 101: 125401

    Article  CAS  Google Scholar 

  27. Tu Z, Zhou T, Ersevim T, et al. Spin-orbit coupling proximity effect in MoS2/Fe3GeTe2 heterostructures. Appl Phys Lett, 2022, 120: 043102

    Article  CAS  Google Scholar 

  28. Fu H, Liu CX, Yan B. Exchange bias and quantum anomalous Hall effect in the MnBi2Te4/CrI3 heterostructure. Sci Adv, 2020, 6: eaaz0948

    Article  CAS  Google Scholar 

  29. Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17: 1133–1136

    Article  CAS  Google Scholar 

  30. Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265–269

    Article  CAS  Google Scholar 

  31. Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270–273

    Article  CAS  Google Scholar 

  32. Yang X, Zhou X, Feng W, et al. Tunable magneto-optical effect, anomalous Hall effect, and anomalous Nernst effect in the two-dimensional room-temperature ferromagnet 1T-CrTe2. Phys Rev B, 2021, 103: 024436

    Article  CAS  Google Scholar 

  33. Yu Z, Xia W, Xu K, et al. Pressure-induced structural phase transition and a special amorphization phase of two-dimensional ferromagnetic semiconductor Cr2Ge2Te6. J Phys Chem C, 2019, 123: 13885–13891

    Article  CAS  Google Scholar 

  34. Ferrenti AM, Klemenz S, Lei S, et al. Change in magnetic properties upon chemical exfoliation of FeOCl. Inorg Chem, 2020, 59: 1176–1182

    Article  CAS  Google Scholar 

  35. Sekine T, Jouanne M, Julien C, et al. Light-scattering study of dynamical behavior of antiferromagnetic spins in the layered magnetic semiconductor FePS3. Phys Rev B, 1990, 42: 8382–8393

    Article  CAS  Google Scholar 

  36. Mak KF, Shan J, Ralph DC. Probing and controlling magnetic states in 2D layered magnetic materials. Nat Rev Phys, 2019, 1: 646–661

    Article  Google Scholar 

  37. Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363: eaav4450

    Article  CAS  Google Scholar 

  38. Song T, Cai X, Tu MWY, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360: 1214–1218

    Article  CAS  Google Scholar 

  39. Song T, Fei Z, Yankowitz M, et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat Mater, 2019, 18: 1298–1302

    Article  CAS  Google Scholar 

  40. Lin X, Yang W, Wang KL, et al. Two-dimensional spintronics for low-power electronics. Nat Electron, 2019, 2: 274–283

    Article  CAS  Google Scholar 

  41. Liu S, Yuan X, Zou Y, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater Appl, 2017, 1: 30

    Article  Google Scholar 

  42. Zhong D, Seyler KL, Linpeng X, et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valley-tronics. Sci Adv, 2017, 3: e1603113

    Article  Google Scholar 

  43. Stephens PJ. Magnetic circular dichroism. Annu Rev Phys Chem, 1974, 25: 201–232

    Article  CAS  Google Scholar 

  44. Mason WR. Magnetic Circular Dichroism Spectroscopy. Hoboken: John Wiley & Sons, 2007

    Book  Google Scholar 

  45. Jiang S, Shan J, Mak KF. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17: 406–410

    Article  CAS  Google Scholar 

  46. Wang M, Kang L, Su J, et al. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale, 2020, 12: 16427–16432

    Article  CAS  Google Scholar 

  47. Huang B, Clark G, Klein DR, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotech, 2018, 13: 544–548

    Article  CAS  Google Scholar 

  48. Jones RR, Hooper DC, Zhang L, et al. Raman techniques: Fundamentals and frontiers. Nanoscale Res Lett, 2019, 14: 231

    Article  Google Scholar 

  49. Kim K, Lee JU, Cheong H. Raman spectroscopy of two-dimensional magnetic van der Waals materials. Nanotechnology, 2019, 30: 452001

    Article  CAS  Google Scholar 

  50. Sethi A, Byrum T, McAuliffe RD, et al. Magnons and magnetodielectric effects in CoCr2O4: Raman scattering studies. Phys Rev B, 2017, 95: 174413

    Article  Google Scholar 

  51. Byrum T, Gleason SL, Thaler A, et al. Effects of magnetic field and twin domains on magnetostructural phase mixture in Mn3O4: Raman scattering studies of untwinned crystals. Phys Rev B, 2016, 93: 184418

    Article  Google Scholar 

  52. Rovillain P, Cazayous M, Gallais Y, et al. Magnetic field induced dehybridization of the electromagnons in multiferroic TbMnO3. Phys Rev Lett, 2011, 107: 027202

    Article  CAS  Google Scholar 

  53. Lee JU, Lee S, Ryoo JH, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett, 2016, 16: 7433–7438

    Article  CAS  Google Scholar 

  54. Tian Y, Gray MJ, Ji H, et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater, 2016, 3: 025035

    Article  Google Scholar 

  55. McCreary A, Simpson JR, Mai TT, et al. Quasi-two-dimensional magnon identification in antiferromagnetic FePS3via magneto-Raman spectroscopy. Phys Rev B, 2020, 101: 064416

    Article  CAS  Google Scholar 

  56. Shen YR. Optical second harmonic generation at interfaces. Annu Rev Phys Chem, 1989, 40: 327–350

    Article  CAS  Google Scholar 

  57. Fiebig M, Pavlov VV, Pisarev RV. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: Review. J Opt Soc Am B, 2005, 22: 96–118

    Article  CAS  Google Scholar 

  58. Sun Z, Yi Y, Song T, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature, 2019, 572: 497–501

    Article  CAS  Google Scholar 

  59. Aoki T. Photoluminescence Spectroscopy. In: Characterization of Materials, Hoboken: John Wiley & Sons, Inc., 2012: 1–12

    Google Scholar 

  60. Pavliuk MV, Fernandes DLA, El-Zohry AM, et al. Magnetic manipulation of spontaneous emission from inorganic CsPbBr3 perovskites nanocrystals. Adv Opt Mater, 2016, 4: 2004–2008

    Article  CAS  Google Scholar 

  61. Qi Z, Sheng F, Zhu L, et al. Annealing effects on Cd0.96Zn0.04Te crystals with Te inclusions probed by photoluminescence spectroscopy. Phys Status Solidi B, 2016, 253: 1612–1615

    Article  CAS  Google Scholar 

  62. Seyler KL, Zhong D, Klein DR, et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator Nat Phys, 2018, 14: 277–281

    Article  CAS  Google Scholar 

  63. Zhang Z, Shang J, Jiang C, et al. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett, 2019, 19: 3138–3142

    Article  CAS  Google Scholar 

  64. Onoda S, Sugimoto N, Nagaosa N. Intrinsic versus extrinsic anomalous Hall effect in ferromagnets. Phys Rev Lett, 2006, 97: 126602

    Article  Google Scholar 

  65. Lee WL, Watauchi S, Miller VL, et al. Dissipationless anomalous Hall current in the ferromagnetic spinel CuCr2Se4−xBrx. Science, 2004, 303: 1647–1649

    Article  CAS  Google Scholar 

  66. Zeng C, Yao Y, Niu Q, et al. Linear magnetization dependence of the intrinsic anomalous Hall effect. Phys Rev Lett, 2006, 96: 037204

    Article  Google Scholar 

  67. Chang CZ, Zhang J, Liu M, et al. Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv Mater, 2013, 25: 1065–1070

    Article  CAS  Google Scholar 

  68. Tan C, Lee J, Jung SG, et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat Commun, 2018, 9: 1554

    Article  Google Scholar 

  69. Inoue J, Maekawa S. Theory of tunneling magnetoresistance in granular magnetic films. Phys Rev B, 1996, 53: R11927–R11929

    Article  CAS  Google Scholar 

  70. Wang Z, Sapkota D, Taniguchi T, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett, 2018, 18: 4303–4308

    Article  CAS  Google Scholar 

  71. Wang W, Narayan A, Tang L, et al. Spin-valve effect in NiFe/MoS2/NiFe junctions. Nano Lett, 2015, 15: 5261–5267

    Article  CAS  Google Scholar 

  72. Iqbal MZ, Iqbal MW, Siddique S, et al. Room temperature spin valve effect in NiFe/WS2/Co junctions. Sci Rep, 2016, 6: 21038

    Article  CAS  Google Scholar 

  73. Gibson GA, Schultz S. Magnetic force microscope study of the micromagnetics of submicrometer magnetic particles. J Appl Phys, 1993, 73: 4516–4521

    Article  CAS  Google Scholar 

  74. Serri M, Cucinotta G, Poggini L, et al. Enhancement of the magnetic coupling in exfoliated CrCl3 crystals observed by low-temperature magnetic force microscopy and X-ray magnetic circular dichroism. Adv Mater, 2020, 32: 2000566

    Article  CAS  Google Scholar 

  75. Guo T, Ma Z, Luo X, et al. Multiple domain structure and symmetry types in narrow temperature and magnetic field ranges in layered Cr2Ge2Te6 crystal measured by magnetic force microscope. Mater Charact, 2021, 173: 110913

    Article  CAS  Google Scholar 

  76. Mukasa K, Sueoka K, Hasegawa H, et al. Spin-polarized STM and its family. Mater Sci Eng-B, 1995, 31: 69–76

    Article  Google Scholar 

  77. Chen W, Sun Z, Wang Z, et al. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019, 366: 983–987

    Article  CAS  Google Scholar 

  78. Trainer C, Armitage OR, Lane H, et al. Relating spin-polarized STM imaging and inelastic neutron scattering in the van der Waals ferromagnet Fe3GeTe2. Phys Rev B, 2022, 106: L081405

    Article  CAS  Google Scholar 

  79. Rondin L, Tetienne JP, Hingant T, et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys, 2014, 77: 056503

    Article  CAS  Google Scholar 

  80. Acosta VM, Bauch E, Ledbetter MP, et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys Rev B, 2009, 80: 115202

    Article  Google Scholar 

  81. Casola F, van der Sar T, Yacoby A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat Rev Mater, 2018, 3: 17088

    Article  CAS  Google Scholar 

  82. Thiel L, Wang Z, Tschudin MA, et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science, 2019, 364: 973–976

    Article  CAS  Google Scholar 

  83. Fan C, Zamick L. The sturdiness of the shell model: Informal review. 2022, arXiv:2201.13247

  84. Yusuf SM, Kumar A. Neutron scattering of advanced magnetic materials. Appl Phys Rev, 2017, 4: 031303

    Article  Google Scholar 

  85. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystlogr, 1969, 2: 65–71

    Article  CAS  Google Scholar 

  86. Halder M, Yusuf SM, Kumar A, et al. Crossover from antiferromagnetic to ferromagnetic ordering in the semi-Heusler alloys Cu1−xNixMnSb with increasing Ni concentration. Phys Rev B, 2011, 84: 094435

    Article  Google Scholar 

  87. Yusuf SM, Chakraborty KR, Kumar A, et al. Magnetic ordering: Neutron diffraction and depolarization studies at Dhruva reactor. Neutron News, 2014, 25: 22–25

    Article  Google Scholar 

  88. Hellman F, Hoffmann A, Tserkovnyak Y, et al. Interface-induced phenomena in magnetism. Rev Mod Phys, 2017, 89: 025006

    Article  Google Scholar 

  89. Granata C, Vettoliere A. Nano superconducting quantum interference device: A powerful tool for nanoscale investigations. Phys Rep, 2016, 614: 1–69

    Article  CAS  Google Scholar 

  90. Martínez-Pérez MJ, Koelle D. NanoSQUIDs: Basics & recent advances. Phys Sci Rev, 2017, 2: 5001

    Google Scholar 

  91. Wernsdorfer W. From micro- to nano-SQUIDs: Applications to nanomagnetism. Supercond Sci Technol, 2009, 22: 064013

    Article  Google Scholar 

  92. Berger J. The stationary SQUID. J Low Temp Phys, 2018, 191: 330–343

    Article  CAS  Google Scholar 

  93. Tomar S, Ghosh B, Mardanya S, et al. Intrinsic magnetism in monolayer transition metal trihalides: A comparative study. J Magn Magn Mater, 2019, 489: 165384

    Article  CAS  Google Scholar 

  94. McGuire M. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals, 2017, 7: 121

    Article  Google Scholar 

  95. Soriano D, Katsnelson MI, Fernández-Rossier J. Magnetic two-dimensional chromium trihalides: A theoretical perspective. Nano Lett, 2020, 20: 6225–6234

    Article  CAS  Google Scholar 

  96. Klein DR, MacNeill D, Song Q, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat Phys, 2019, 15: 1255–1260

    Article  CAS  Google Scholar 

  97. Xue F, Hou Y, Wang Z, et al. Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature. Phys Rev B, 2019, 100: 224429

    Article  CAS  Google Scholar 

  98. Huang C, Zhou J, Wu H, et al. Quantum anomalous Hall effect in ferromagnetic transition metal halides. Phys Rev B, 2017, 95: 045113

    Article  Google Scholar 

  99. Hirakawa K, Kadowaki H, Ubukoshi K. Study of frustration effects in two-dimensional triangular lattice antiferromagnets-neutron powder diffraction study of VX2, X≡Cl, Br and I. J Phys Soc Jpn, 1983, 52: 1814–1824

    Article  CAS  Google Scholar 

  100. Abdul Wasey AHM, Karmakar D, Das GP. Frustrated non-collinearity in the magnetic behaviour of layered VX2 [X = Cl, Br, I] systems. AIP Conf Proc, 2013, 1512: 1114–1115

    Article  CAS  Google Scholar 

  101. Tang H, Huang Y, Yuan H, et al. Layered TiCl2 monolayer as an antiferromagnetic semiconductor. SPIN, 2022, 12: 2250004

    Article  CAS  Google Scholar 

  102. Prayitno TB, Ishii F. First-principles study of spiral spin density waves in monolayer MnCl2 using generalized bloch theorem. J Phys Soc Jpn, 2019, 88: 104705

    Article  Google Scholar 

  103. Zhou X, Brzostowski B, Durajski A, et al. Atomically thin 1T-FeCl2 grown by molecular-beam epitaxy. J Phys Chem C, 2020, 124: 9416–9423

    Article  CAS  Google Scholar 

  104. Botana AS, Norman MR. Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer. Phys Rev Mater, 2019, 3: 044001

    Article  CAS  Google Scholar 

  105. Lu M, Yao Q, Xiao C, et al. Mechanical, electronic, and magnetic properties of NiX2 (X = Cl, Br, I) layers. ACS Omega, 2019, 4: 5714–5721

    Article  CAS  Google Scholar 

  106. Wang S, Wang J, Khazaei M. Discovery of stable and intrinsic antiferromagnetic iron oxyhalide monolayers. Phys Chem Chem Phys, 2020, 22: 11731–11739

    Article  CAS  Google Scholar 

  107. Feng Y, Peng R, Dai Y, et al. Antiferromagnetic ferroelastic multiferroics in single-layer VOX (X = Cl, Br) predicted from first-principles. Appl Phys Lett, 2021, 119: 173103

    Article  CAS  Google Scholar 

  108. Xu S, Jia F, Zhao G, et al. A two-dimensional ferroelectric ferromagnetic half semiconductor in a VOF monolayer. J Mater Chem C, 2021, 9: 9130–9136

    Article  CAS  Google Scholar 

  109. Miao N, Xu B, Zhu L, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140: 2417–2420

    Article  CAS  Google Scholar 

  110. Xu C, Zhang J, Guo Z, et al. A first-principles study on the electronic property and magnetic anisotropy of ferromagnetic CrOF and CrOCl monolayers. J Phys-Condens Matter, 2021, 33: 195804

    Article  CAS  Google Scholar 

  111. Zhang Y, Chu J, Yin L, et al. Ultrathin magnetic 2D single-crystal CrSe. Adv Mater, 2019, 31: 1900056

    Article  Google Scholar 

  112. Li N, Zhu L, Shang H, et al. Controlled synthesis and Raman study of a 2D antiferromagnetic p-type semiconductor: α-MnSe. Nanoscale, 2021, 13: 6953–6964

    Article  CAS  Google Scholar 

  113. Zou J, Yang Y, Hu D, et al. Controlled growth of ultrathin ferromagnetic β-MnSe semiconductor. SmartMat, 2022, 3: 482–490

    Article  CAS  Google Scholar 

  114. Kriegner D, Výborný K, Olejník K, et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat Commun, 2016, 7: 11623

    Article  CAS  Google Scholar 

  115. Kim W, Park IJ, Kim HJ, et al. Room-temperature ferromagnetic property in MnTe semiconductor thin film grown by molecular beam epitaxy. IEEE Trans Magn, 2009, 45: 2424–2427

    Article  CAS  Google Scholar 

  116. Liang F, Wang C, Luo C, et al. Ferromagnetic CoSe broadband photodetector at room temperature. Nanotechnology, 2020, 31: 374002

    Article  CAS  Google Scholar 

  117. Kang L, Ye C, Zhao X, et al. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat Commun, 2020, 11: 3729

    Article  CAS  Google Scholar 

  118. Gan LY, Zhang Q, Cheng Y, et al. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control. Phys Rev B, 2013, 88: 235310

    Article  Google Scholar 

  119. Ma Y, Dai Y, Guo M, et al. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano, 2012, 6: 1695–1701

    Article  CAS  Google Scholar 

  120. Li B, Wan Z, Wang C, et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat Mater, 2021, 20: 818–825

    Article  CAS  Google Scholar 

  121. Meng L, Zhou Z, Xu M, et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat Commun, 2021, 12: 809

    Article  CAS  Google Scholar 

  122. Kan M, Adhikari S, Sun Q. Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys Chem Chem Phys, 2014, 16: 4990–4994

    Article  CAS  Google Scholar 

  123. Chen W, Zhang J, Nie Y, et al. Tuning magnetic properties of single-layer MnTe2via strain engineering. J Phys Chem Solids, 2020, 143: 109489

    Article  CAS  Google Scholar 

  124. Cui F, Zhao X, Xu J, et al. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv Mater, 2020, 32: 1905896

    Article  CAS  Google Scholar 

  125. Zhu X, Liu H, Liu L, et al. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets. Chem Mater, 2021, 33: 3851–3858

    Article  CAS  Google Scholar 

  126. Wen Y, Liu Z, Zhang Y, et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett, 2020, 20: 3130–3139

    Article  CAS  Google Scholar 

  127. Chua R, Zhou J, Yu X, et al. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv Mater, 2021, 33: 2103360

    Article  CAS  Google Scholar 

  128. Kurita N, Nakao K. Band structures and physical properties of magnetic layered semiconductors MPS3. J Phys Soc Jpn, 1989, 58: 610–621

    Article  CAS  Google Scholar 

  129. Ouvrard G, Brec R, Rouxel J. Structural determination of some MPS3 layered phases (M = Mn, Fe, Co, Ni and Cd). Mater Res Bull, 1985, 20: 1181–1189

    Article  CAS  Google Scholar 

  130. Wang YM, Zhang JF, Li CH, et al. Raman scattering study of magnetic layered MPS3 crystals (M = Mn, Fe, Ni). Chin Phys B, 2019, 28: 056301

    Article  CAS  Google Scholar 

  131. Liu Q, Wang L, Fu Y, et al. Magnetic order in XY-type antiferromagnetic monolayer CoPS33 revealed by Raman spectroscopy. Phys Rev B, 2021, 103: 235411

    Article  CAS  Google Scholar 

  132. Kim K, Lim SY, Lee JU, et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat Commun, 2019, 10: 345

    Article  Google Scholar 

  133. Kim K, Lim SY, Kim J, et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy. 2D Mater, 2019, 6: 041001

    Article  CAS  Google Scholar 

  134. Zhuang HL, Zhou J. Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4. Phys Rev B, 2016, 94: 195307

    Article  Google Scholar 

  135. Baranava MS, Hvazdouski DC, Skachkova VA, et al. Magnetic interactions in Cr2Ge2Te6 and Cr2Si2Te6 monolayers: Ab initio study. Mater Today-Proc, 2020, 20: 342–347

    Article  CAS  Google Scholar 

  136. Lin MW, Zhuang HL, Yan J, et al. Ultrathin nanosheets of CrSiTe3: A semiconducting two-dimensional ferromagnetic material. J Mater Chem C, 2016, 4: 315–322

    Article  CAS  Google Scholar 

  137. Roemer R, Liu C, Zou K. Robust ferromagnetism in wafer-scale monolayer and multilayer Fe3GeTe2. npj 2D Mater Appl, 2020, 4: 33

    Article  CAS  Google Scholar 

  138. Yang X, Zhou X, Feng W, et al. Strong magneto-optical effect and anomalous transport in the two-dimensional van der Waals magnets FenGeTe2 (n = 3, 4, 5). Phys Rev B, 2021, 104: 104427

    Article  CAS  Google Scholar 

  139. Yan JQ, Liu YH, Parker DS, et al. A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals. Phys Rev Mater, 2020, 4: 054202

    Article  CAS  Google Scholar 

  140. Li J, Li Y, Du S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci Adv, 2019, 5: eaaw5685

    Article  CAS  Google Scholar 

  141. Li Y, Jiang Z, Li J, et al. Magnetic anisotropy of the two-dimensional ferromagnetic insulator MnBi2Te4. Phys Rev B, 2019, 100: 134438

    Article  CAS  Google Scholar 

  142. Jiang S, Li L, Wang Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotech, 2018, 13: 549–553

    Article  CAS  Google Scholar 

  143. Ren W, Jin K, Wang J, et al. Tunable electronic structure and magnetic anisotropy in bilayer ferromagnetic semiconductor Cr2Ge2Te6. Sci Rep, 2021, 11: 2744

    Article  CAS  Google Scholar 

  144. Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotech, 2018, 13: 554–559

    Article  CAS  Google Scholar 

  145. Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563: 94–99

    Article  CAS  Google Scholar 

  146. Wang N, Tang H, Shi M, et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6via organic ion intercalation. J Am Chem Soc, 2019, 141: 17166–17173

    Article  CAS  Google Scholar 

  147. Zhang L, Tang C, Sanvito S, et al. Hydrogen-intercalated 2D magnetic bilayer: Controlled magnetic phase transition and half-metallicity via ferroelectric switching. ACS Appl Mater Interfaces, 2022, 14: 1800–1806

    Article  CAS  Google Scholar 

  148. Li T, Jiang S, Sivadas N, et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat Mater, 2019, 18: 1303–1308

    Article  CAS  Google Scholar 

  149. Ci W, Yang H, Xue W, et al. Thickness-dependent and strain-tunable magnetism in two-dimensional van der Waals VSe2. Nano Res, 2022, 15: 7597–7603

    Article  CAS  Google Scholar 

  150. Wang Y, Wang C, Liang SJ, et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv Mater, 2020, 32: 2004533

    Article  CAS  Google Scholar 

  151. Wang H, Xu R, Liu C, et al. Pressure-dependent intermediate magnetic phase in thin Fe3GeTe2 flakes. J Phys Chem Lett, 2020, 11: 7313–7319

    Article  CAS  Google Scholar 

  152. Dong XJ, You JY, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous Hall conductivity in two-dimensional Cr2Ge2Se6. Phys Rev Appl, 2019, 12: 014020

    Article  CAS  Google Scholar 

  153. Gu Y, Zhang S, Zou X. Tunable magnetism in layered CoPS3 by pressure and carrier doping. Sci China Mater, 2021, 64: 673–682

    Article  CAS  Google Scholar 

  154. Dolui K, Petrović MD, Zollner K, et al. Proximity spin-orbit torque on a two-dimensional magnet within van der Waals heterostructure: Current-driven antiferromagnet-to-ferromagnet reversible nonequilibrium phase transition in bilayer CrI3. Nano Lett, 2020, 20: 2288–2295

    Article  CAS  Google Scholar 

  155. Zhang L, Huang X, Dai H, et al. Proximity-coupling-induced significant enhancement of coercive field and curie temperature in 2D van der Waals heterostructures. Adv Mater, 2020, 32: 2002032

    Article  CAS  Google Scholar 

  156. Idzuchi H, Llacsahuanga Allcca AE, Pan XC, et al. Increased Curie temperature and enhanced perpendicular magneto anisotropy of Cr2 Ge2Te6/NiO heterostructures. Appl Phys Lett, 2019, 115: 232403

    Article  Google Scholar 

  157. Stanciu CD, Hansteen F, Kimel AV, et al. All-optical magnetic recording with circularly polarized light. Phys Rev Lett, 2007, 99: 047601

    Article  CAS  Google Scholar 

  158. Zhang P, Chung TF, Li Q, et al. All-optical switching of magnetization in atomically thin CrI3. Nat Mater, 2022, 21: 1373–1378

    Article  CAS  Google Scholar 

  159. Kim HH, Yang B, Patel T, et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett, 2018, 18: 4885–4890

    Article  CAS  Google Scholar 

  160. Klein DR, MacNeill D, Lado JL, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, 2018, 360: 1218–1222

    Article  CAS  Google Scholar 

  161. Jiang S, Li L, Wang Z, et al. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat Electron, 2019, 2: 159–163

    Article  Google Scholar 

  162. Worledge DC, Geballe TH. Magnetoresistive double spin filter tunnel junction. J Appl Phys, 2000, 88: 5277–5279

    Article  CAS  Google Scholar 

  163. Lado JL, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4: 035002

    Article  Google Scholar 

  164. Irkhin VY, Katanin AA. Kosterlitz-Thouless and magnetic transition temperatures in layered magnets with a weak easy-plane anisotropy. Phys Rev B, 1999, 60: 2990–2993

    Article  CAS  Google Scholar 

  165. McGuire MA, Dixit H, Cooper VR, et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater, 2015, 27: 612–620

    Article  CAS  Google Scholar 

  166. Wang X, Du K, Fredrik Liu YY, et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater, 2016, 3: 031009

    Article  Google Scholar 

  167. Alghamdi M, Lohmann M, Li J, et al. Highly efficient spin-orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett, 2019, 19: 4400–4405

    Article  CAS  Google Scholar 

  168. Buzdin AI. Proximity effects in superconductor-ferromagnet heterostructures. Rev Mod Phys, 2005, 77: 935–976

    Article  CAS  Google Scholar 

  169. Lee C, Katmis F, Jarillo-Herrero P, et al. Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet. Nat Commun, 2016, 7: 12014

    Article  CAS  Google Scholar 

  170. Tong Q, Liu F, Xiao J, et al. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett, 2018, 18: 7194–7199

    Article  CAS  Google Scholar 

  171. Ding B, Li Z, Xu G, et al. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett, 2020, 20: 868–873

    Article  CAS  Google Scholar 

  172. Seyler KL, Zhong D, Huang B, et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett, 2018, 18: 3823–3828

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22175184 and 22105207).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Dai C summarized the literature and wrote the review; He P, Luo L, and Zhan P participated in the writing of the review; Zheng J and Guan B provided some valuable suggestion. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Bo Guan  (关波) or Jian Zheng  (郑健).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Chuying Dai received her BSc degree from Jilin University in 2015. Currently, she is a PhD student under the supervision of Prof. Jian Zheng at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS). Her research interests focus on the preparation and magnetic properties of 2D materials.

Jian Zheng is a professor at the Organic Solids Laboratory, ICCAS. He received his PhD degree in organic chemistry in 2011 under the supervision of Prof. Daoben Zhu and Prof. YunQi Liu from ICCAS. His research interests are focused on the preparation, organic hybridization and self-assembly of novel 2D materials based on chemical methods and the application and research of 2D materials in the fields of optical, electrical and energy devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., He, P., Luo, L. et al. Research progress of two-dimensional magnetic materials. Sci. China Mater. 66, 859–876 (2023). https://doi.org/10.1007/s40843-022-2298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2298-0

Keywords

Navigation