Skip to main content
Log in

A rare 3D hybrid bimetal halide ferroelectric: (3-Hydroxypyrrolidinium)2RbBiBr6

一种罕见的三维杂化双金属卤化物铁电体: (3-Hydroxypyrrolidinium)2RbBiBr6

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

杂化双金属卤化物由于具有丰富的结构并且在光电和光伏器件 领域中具有广阔的应用前景, 因而引起广泛的关注. 然而, RbIBiIII基杂 化双金属卤化物的铁电性质尚未被探索. 在本文中, 我们报道了一例罕 见的三维双金属卤化物铁电体: (3-hydroxypyrrolidinium)2RbBiBr6 (1). 其中, RbIBiII双金属多面体通过共面和共角顶联接成三维笼状无机框 架, 显现出4连接的lon拓扑结构, 而有机阳离子位于其孔洞中. 值得注 意的是, 该铁电体具有非常高的居里温度(432 K), 较大的自发极化强 度(5.73 µC cm2)和热释电系数(28.35 µC m2 K1). 这项工作丰富了杂 化金属卤化物体系, 为探索稳定、绿色铁电材料提供了一种可行的 策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kovalenko MV, Protesescu L, Bodnarchuk MI. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358: 745–750

    Article  CAS  Google Scholar 

  2. Jena AK, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem Rev, 2019, 119: 3036–3103

    Article  CAS  Google Scholar 

  3. Shi PP, Ye Q, Li Q, et al. Novel phase-transition materials coupled with switchable dielectric, magnetic, and optical properties: [(CH3)4P][FeCl4] and [(CH3)4P][FeBr4]. Chem Mater, 2014, 26: 6042–6049

    Article  CAS  Google Scholar 

  4. Cao YJ, Zhou L, He L, et al. Phase transition and band gap regulation by halogen substituents on the organic cation in organic-inorganic hybrid perovskite semiconductors. Chem Eur J, 2020, 26: 14124–14129

    Article  CAS  Google Scholar 

  5. Liu SM, Cao YJ, He L, et al. Phosphonium-based one-dimensional perovskite with switchable dielectric behaviors and phase transitions. Inorg Chem, 2020, 59: 18396–18401

    Article  Google Scholar 

  6. Fu Y, Meng F, Rowley MB, et al. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J Am Chem Soc, 2015, 137: 5810–5818

    Article  CAS  Google Scholar 

  7. He L, Liu Y, Shi P, et al. Energy harvesting and Pd(II) sorption based on organic-inorganic hybrid perovskites. ACS Appl Mater Interfaces, 2020, 12: 53799–53806

    Article  CAS  Google Scholar 

  8. Huang H, Pradhan B, Hofkens J, et al. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett, 2020, 5: 1107–1123

    Article  CAS  Google Scholar 

  9. Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon, 2014, 8: 506–514

    Article  CAS  Google Scholar 

  10. Sun Q, Fassl P, Vaynzof Y. Large-scale compositional and electronic inhomogeneities in CH3NH3PbI3 perovskites and their effect on device performance. ACS Appl Energy Mater, 2018, 1: 2410–2416

    Article  CAS  Google Scholar 

  11. Pitchaiya S, Natarajan M, Santhanam A, et al. A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arabian J Chem, 2020, 13: 2526–2557

    Article  CAS  Google Scholar 

  12. Guo W, Liu X, Han S, et al. Room-temperature ferroelectric material composed of a two-dimensional metal halide double perovskite for X-ray detection. Angew Chem Int Ed, 2020, 59: 13879–13884

    Article  CAS  Google Scholar 

  13. Wang CF, Li H, Li MG, et al. Centimeter-sized single crystals of two-dimensional hybrid iodide double perovskite (4,4-difluoropiperidinium)4AgBiI8 for high-temperature ferroelectricity and efficient X-ray detection. Adv Funct Mater, 2021, 31: 2009457

    Article  CAS  Google Scholar 

  14. Fang Y, Zhang L, Wu L, et al. Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4-AgBiBr8(BA=CH3(CH2)3NH3+). Angew Chem Int Ed, 2019, 58: 15249–15253

    Article  CAS  Google Scholar 

  15. Meng QR, Xu WJ, Hu WH, et al. An unprecedented hexagonal double perovskite organic-inorganic hybrid ferroelastic material: (Piperidinium)2[KBiCl6]. Chem Commun, 2021, 57: 6292–6295

    Article  CAS  Google Scholar 

  16. Wei F, Deng Z, Sun S, et al. The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater Horiz, 2016, 3: 328–332

    Article  CAS  Google Scholar 

  17. Meyer E, Mutukwa D, Zingwe N, et al. Lead-free halide double perovskites: A review of the structural, optical, and stability properties as well as their viability to replace lead halide perovskites. Metals, 2018, 8: 667

    Article  Google Scholar 

  18. Connor BA, Leppert L, Smith MD, et al. Layered halide double perovskites: Dimensional reduction of Cs2AgBiBr6. J Am Chem Soc, 2018, 140: 5235–5240

    Article  CAS  Google Scholar 

  19. Mao L, Teicher SML, Stoumpos CC, et al. Chemical and structural diversity of hybrid layered double perovskite halides. J Am Chem Soc, 2019, 141: 19099–19109

    Article  CAS  Google Scholar 

  20. Jana MK, Janke SM, Dirkes DJ, et al. Direct-bandgap 2D silver-bismuth iodide double perovskite: The structure-directing influence of an oligothiophene spacer cation. J Am Chem Soc, 2019, 141: 7955–7964

    Article  CAS  Google Scholar 

  21. Xu WJ, He CT, Ji CM, et al. Molecular dynamics of flexible polar cations in a variable confined space: Toward exceptional two-step nonlinear optical switches. Adv Mater, 2016, 28: 5886–5890

    Article  CAS  Google Scholar 

  22. Liu YT, He L, Shi PP, et al. A one-dimensional switchable dielectric material with Pd uptake function: [(CH2)3NH2S]2BiCl5. Chem Commun, 2020, 56: 13764–13767

    Article  CAS  Google Scholar 

  23. He L, Zhou L, Shi PP, et al. One-dimensional cadmium thiocyanate perovskite ferroelastics tuned by halogen substitution. Chem Mater, 2019, 31: 10236–10242

    Article  CAS  Google Scholar 

  24. Zeng YL, Huang XQ, Huang CR, et al. Unprecedented 2D homochiral hybrid lead-iodide perovskite thermochromic ferroelectrics with ferroelastic switching. Angew Chem, 2021, 133: 10825–10830

    Article  Google Scholar 

  25. He L, Shi PP, Zhao MM, et al. Emergent chirality and nonlinear optical switching in a ferroelastic molecular perovskite solid solution. Chem Mater, 2021, 33: 799–805

    Article  CAS  Google Scholar 

  26. Chen S, Shang R, Wang BW, et al. An A-site mixed-ammonium solid solution perovskite series of [(NH2NH3)x(CH3NH3)1−x[Mn(HCOO)3] (x = 1.00–0.67). Angew Chem Int Ed, 2015, 54: 11093–11096

    Article  CAS  Google Scholar 

  27. Li PF, Liao WQ, Tang YY, et al. Organic enantiomeric high-Tc ferroelectrics. Proc Natl Acad Sci USA, 2019, 116: 5878–5885

    Article  CAS  Google Scholar 

  28. Zhou L, Shi PP, Liu XM, et al. An above-room-temperature phosphonium-based molecular ferroelectric perovskite, [(CH3)4P]CdCl3, with Sb3+-doped luminescence. NPG Asia Mater, 2019, 11: 15

    Article  CAS  Google Scholar 

  29. Peng Y, Liu X, Sun Z, et al. Exploiting the bulk photovoltaic effect in a 2D trilayered hybrid ferroelectric for highly sensitive polarized light detection. Angew Chem Int Ed, 2020, 59: 3933–3937

    Article  CAS  Google Scholar 

  30. Wang ZM, Gao S. Can molecular ferroelectrics challenge pure inorganic ones? Natl Sci Rev, 2014, 1: 25–26

    Article  Google Scholar 

  31. Shi PP, Tang YY, Li PF, et al. Symmetry breaking in molecular ferroelectrics. Chem Soc Rev, 2016, 45: 3811–3827

    Article  CAS  Google Scholar 

  32. Li C, Wang A, Xie L, et al. Emerging alkali metal ion (Li+, Na+, K+ and Rb+) doped perovskite films for efficient solar cells: Recent advances and prospects. J Mater Chem A, 2019, 7: 24150–24163

    Article  CAS  Google Scholar 

  33. Turren-Cruz SH, Saliba M, Mayer MT, et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ Sci, 2018, 11: 78–86

    Article  CAS  Google Scholar 

  34. Lichtenberg C. Aminotroponiminates: Alkali metal compounds reveal unprecedented coordination modes. Organometallics, 2016, 35: 894–902

    Article  CAS  Google Scholar 

  35. Shi C, Ye L, Gong ZX, et al. Two-dimensional organic-inorganic hybrid rare-earth double perovskite ferroelectrics. J Am Chem Soc, 2020, 142: 545–551

    Article  CAS  Google Scholar 

  36. Aizu K. Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J Phys Soc Jpn, 1969, 27: 387–396

    Article  CAS  Google Scholar 

  37. Tang Z, Gao KG, Sun XF, et al. High-temperature molecular ferroelectric tris(2-hydroxyethyl) ammonium bromide with dielectric relaxation. J Phys Chem Lett, 2019, 10: 6650–6655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21771037, 21875035, 21991144 and 21805033).

Author information

Authors and Affiliations

Authors

Contributions

Ye Q conceived and directed the project. He L, Xu K and Liu ZB performed the synthesis and characterization experiments. He L analyzed the data and wrote the manuscript with support from Ye Q and Zhang W. Shi PP participated in the discussion and helped in the artworks. All authors reviewed and have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Wen Zhang  (张闻) or Qiong Ye  (叶琼).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Lei He was born in 1996 in Liaoning Province, China. He is currently a PhD candidate in material physics and chemistry at Southeast University and under the supervision of Prof. Qiong Ye and Prof. Wen Zhang. His current research interests focus on the design and synthesis of molecular ferroelectric and ferroelastic materials, especially in the fields of hybrid metal halides and perovskites.

Wen Zhang was born in 1973 in Zhejiang Province, China. He received his MSc degree from Nanjing University in 2000 and his PhD degree from the Institute of Chemistry, Chinese Academy of Sciences, in 2004. He held postdoctoral positions at Peking University and Kyushu University. Now he is a professor at the School of Chemistry and Chemical Engineering, Southeast University. His research interests focus on polar & chiral functional molecular materials, especially dielectrics, ferroelectrics and dynamic crystals.

Qiong Ye was born in 1982 in Jiangxi Province, China. She received her PhD degree in 2007 from Nanjing University and then held a postdoctoral fellowship of Japan Society for the Promotion of Science (JSPS) in Japan over the next two years. Now she is a professor at the School of Chemistry and Chemical Engineering, Southeast University, with the main research interests in dielectric, ferroelectric, ferroelastic and multiferroic materials.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Xu, K., Shi, PP. et al. A rare 3D hybrid bimetal halide ferroelectric: (3-Hydroxypyrrolidinium)2RbBiBr6. Sci. China Mater. 65, 2879–2883 (2022). https://doi.org/10.1007/s40843-022-2030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2030-x

Navigation