Skip to main content
Log in

Assembly of two-dimensional nanofluidic channel with high proton conductivity using single-layer MnO2 nanosheets

单层MnO2纳米片组装的具有高质子电导率的二维微 流体通道

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) single-layer δ-MnO2 (SLMO) with cations intercalated in the interlayers demonstrates specific structural characteristics, possessing superiority in the fields such as energy storage, catalysis, and sensor. However, the synthesis technology of large-lateral-size SLMO nanosheets with high uniformity is rare, which hinders their correlated research. Herein, we report an intercalation-assisted exfoliation approach to produce large-sized SLMO nanosheets with high dispersity in aqueous solution. Few-layer K+-intercalated δ-MnO2 (KMnO) nanosheets were used as a precursor to ensure complete exfoliation. On account of high dispersion and ultrathin 2D morphology, SLMO nanosheets self-assembled into a flexible and free-standing film to construct ordered nanochannels. A high surface charge density of 1.71 mC m−2 and proton mobility of 2.59 × 10−3 cm2 V−1 s−1 were achieved in the free-standing SLMO film. With the extraordinary properties and easily scaled fabrication of the 2D SLMO film, this approach will pave the way for the study of confined ion transportation and enable the easy construction of nanofluidic devices.

摘要

二维(2D)阳离子插层的单层δ-MnO2(SLMO)具有独特的结构特 征, 在储能、催化、传感器等领域表现出优越性. 然而, 高均匀性的大 横向尺寸SLMO纳米片的合成技术十分有限, 这阻碍了相关研究. 本文 中, 我们报道了一种插层辅助剥离的方法来制备分散性良好的大尺寸 SLMO纳米片水系分散液. 以少层K+插层δ-MnO2(KMnO)为前驱体以 确保完全剥离. 由于SLMO纳米片具有良好分散性以及超薄2D形貌, SLMO纳米片可以自组装成一种柔性自支撑的薄膜来构建有序的纳米 通道. 这种自支撑SLMO薄膜具有1.71 mC m−2的表面电荷密度与 2.59 × 10−3 cm2 V−1 s−1的质子迁移率. 由于2D SLMO薄膜优异的性能 以及易于规模化的制备, 本方法将推动离子输运的研究, 并使得微流体 器件的构筑变得容易.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiong C, Li M, Zhao W, et al. Flexible N-doped reduced graphene oxide/carbon nanotube-MnO2 film as a multifunctional material for high-performance supercapacitors, catalysts and sensors. J Materiomics, 2020, 6: 523–531

    Article  Google Scholar 

  2. Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun, 2017, 8: 405

    Article  CAS  Google Scholar 

  3. Xiao Y, Wang PF, Yin YX, et al. A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode. Adv Energy Mater, 2018, 8: 1800492

    Article  CAS  Google Scholar 

  4. Wang Y, Zhang YZ, Dubbink D, et al. Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy, 2018, 49: 481–488

    Article  CAS  Google Scholar 

  5. Jiang M, Fu C, Yang J, et al. Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al-air batteries. Energy Storage Mater, 2018, 18: 34–42

    Article  Google Scholar 

  6. Zhou J, Qin L, Xiao W, et al. Oriented growth of layered-MnO2 nanosheets over α-MnO2 nanotubes for enhanced room-temperature HCHO oxidation. Appl Catal B-Environ, 2017, 207: 233–243

    Article  CAS  Google Scholar 

  7. Zeng Y, Zhang X, Meng Y, et al. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv Mater, 2017, 29: 1700274

    Article  CAS  Google Scholar 

  8. Ortiz-Vitoriano N, Drewett NE, Gonzalo E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy Environ Sci, 2017, 10: 1051–1074

    Article  CAS  Google Scholar 

  9. Hu Z, Xiao X, Chen C, et al. Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy, 2015, 11: 226–234

    Article  CAS  Google Scholar 

  10. Hu Z, Xiao X, Huang L, et al. 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale, 2015, 7: 16094–16099

    Article  CAS  Google Scholar 

  11. Bai B, Li J, Hao J. 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol. Appl Catal B-Environ, 2015, 164: 241–250

    Article  CAS  Google Scholar 

  12. Zhu J, Li Q, Bi W, et al. Ultra-rapid microwave-assisted synthesis of layered ultrathin birnessite K0.17MnO2 nanosheets for efficient energy storage. J Mater Chem A, 2013, 1: 8154–8159

    Article  CAS  Google Scholar 

  13. Wu Y, Tao Y, Zhang X, et al. Self-assembled α-MnO2 urchin-like microspheres as a high-performance cathode for aqueous Zn-ion batteries. Sci China Mater, 2020, 63: 1196–1204

    Article  CAS  Google Scholar 

  14. Hu J, Wang Z, Fu Y, et al. In situ assembly of MnO2 nanosheets on sulfur-embedded multichannel carbon nanofiber composites as cathodes for lithium-sulfur batteries. Sci China Mater, 2020, 63: 728–738

    Article  CAS  Google Scholar 

  15. Du K, Wei G, Zhao F, et al. Urchin-like FeOOH hollow microspheres decorated with MnO2 for enhanced supercapacitor performance. Sci China Mater, 2017, 61: 48–56

    Article  CAS  Google Scholar 

  16. Sun C, Zhang Y, Song S, et al. Tunnel-dependent supercapacitance of MnO2: Effects of crystal structure. J Appl Crystlogr, 2013, 46: 1128–1135

    Article  CAS  Google Scholar 

  17. Saputra E, Muhammad S, Sun H, et al. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environ Sci Technol, 2013, 47: 5882–5887

    Article  CAS  Google Scholar 

  18. Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C, 2008, 112: 4406–4417

    Article  CAS  Google Scholar 

  19. Ghodbane O, Pascal JL, Favier F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces, 2009, 1: 1130–1139

    Article  CAS  Google Scholar 

  20. Lei Z, Lee JM, Singh G, et al. Recent advances of layered-transition metal oxides for energy-related applications. Energy Storage Mater, 2021, 36: 514–550

    Article  Google Scholar 

  21. Xiong T, Zhang Y, Lee WSV, et al. Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: A review. Adv Energy Mater, 2020, 10: 2001769

    Article  CAS  Google Scholar 

  22. Mo S, Zhang Q, Li J, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl Catal B-Environ, 2020, 264: 118464

    Article  CAS  Google Scholar 

  23. Mathew V, Sambandam B, Kim S, et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments. ACS Energy Lett, 2020, 5: 2376–2400

    Article  CAS  Google Scholar 

  24. Zhao Y, Chang C, Teng F, et al. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv Energy Mater, 2017, 7: 1700005

    Article  CAS  Google Scholar 

  25. Xiong P, Ma R, Sakai N, et al. Redox active cation intercalation/deintercalation in two-dimensional layered MnO2 nanostructures for highrate electrochemical energy storage. ACS Appl Mater Interfaces, 2017, 9: 6282–6291

    Article  CAS  Google Scholar 

  26. Wang J, Li J, Jiang C, et al. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Appl Catal B-Environ, 2017, 204: 147–155

    Article  CAS  Google Scholar 

  27. Thenuwara AC, Shumlas SL, Attanayake NH, et al. Copper-intercalated birnessite as a water oxidation catalyst. Langmuir, 2015, 31: 12807–12813

    Article  CAS  Google Scholar 

  28. Zhai W, Wang C, Yu P, et al. Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: Mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem, 2014, 86: 12206–12213

    Article  CAS  Google Scholar 

  29. Zhou J, Chen N, Ge Y, et al. Flexible all-solid-state micro-super-capacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition. Sci China Mater, 2018, 61: 243–253

    Article  CAS  Google Scholar 

  30. Xu Y, Huang J, Yang S, et al. Crystalline-phase-dependent catalytic performance of MnO2 for aerobic oxidation reactions. Sci China Mater, 2017, 60: 1196–1204

    Article  CAS  Google Scholar 

  31. Rohaizad N, Mayorga-Martinez CC, Fojtů M, et al. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev, 2021, 50: 619–657

    Article  CAS  Google Scholar 

  32. Liu Z, Xu K, Sun H, et al. One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small, 2015, 11: 2182–2191

    Article  CAS  Google Scholar 

  33. Varoon K, Zhang X, Elyassi B, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science, 2011, 334: 72–75

    Article  CAS  Google Scholar 

  34. Chung DDL. Exfoliation of graphite. J Mater Sci, 1987, 22: 4190–4198

    Article  CAS  Google Scholar 

  35. Cai X, Luo Y, Liu B, et al. Preparation of 2D material dispersions and their applications. Chem Soc Rev, 2018, 47: 6224–6266

    Article  CAS  Google Scholar 

  36. Li F, Xue M, Zhang X, et al. Advanced composite 2D energy materials by simultaneous anodic and cathodic exfoliation. Adv Energy Mater, 2018, 8: 1702794

    Article  CAS  Google Scholar 

  37. Lee JM, Kang B, Jo YK, et al. Organic intercalant-free liquid exfoliation route to layered metal-oxide nanosheets via the control of electrostatic interlayer interaction. ACS Appl Mater Interfaces, 2019, 11: 12121–12132

    Article  CAS  Google Scholar 

  38. Huang Y, Pan YH, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat Commun, 2020, 11: 2453

    Article  CAS  Google Scholar 

  39. Omomo Y, Sasaki T, Wang L, et al. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J Am Chem Soc, 2003, 125: 3568–3575

    Article  CAS  Google Scholar 

  40. Hu Z, Xiao X, Jin H, et al. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat Commun, 2017, 8: 15630

    Article  CAS  Google Scholar 

  41. Yu Y, Zhai Y, Liu H, et al. Single-layer MnO2 nanosheets: From controllable synthesis to free-standing film for flexible supercapacitors. Mater Lett, 2016, 176: 33–37

    Article  CAS  Google Scholar 

  42. Xin W, Jiang L, Wen L. Two-dimensional nanofluidic membranes toward harvesting salinity gradient power. Acc Chem Res, 2021, 54: 4154–4165

    Article  CAS  Google Scholar 

  43. Konch TJ, Gogoi RK, Gogoi A, et al. Nanofluidic transport through humic acid modified graphene oxide nanochannels. Mater Chem Front, 2018, 2: 1647–1654

    Article  CAS  Google Scholar 

  44. Cao L, Wu H, Yang P, et al. Graphene oxide-based solid electrolytes with 3D prepercolating pathways for efficient proton transport. Adv Funct Mater, 2018, 28: 1804944

    Article  CAS  Google Scholar 

  45. He G, Xu M, Zhao J, et al. Bioinspired ultrastrong solid electrolytes with fast proton conduction along 2D channels. Adv Mater, 2017, 29: 1605898

    Article  CAS  Google Scholar 

  46. Wu Y, Zhou T, Wang Y, et al. The synergistic effect of space and surface charge on nanoconfined ion transport and nanofluidic energy harvesting. Nano Energy, 2022, 92: 106709

    Article  CAS  Google Scholar 

  47. Shao JJ, Raidongia K, Koltonow AR, et al. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat Commun, 2015, 6: 7602

    Article  Google Scholar 

  48. Qin S, Liu D, Wang G, et al. High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers. J Am Chem Soc, 2017, 139: 6314–6320

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51872101, 51602115, and 61434001), the National Program for Support of Top-notch Young Professionals, the Program for HUST Academic Frontier Youth Team, and the Director Fund of WNLO. We also thank facility support provided by the Center for Nanoscale Characterization & Devices, WNLO of HUST, and the Analytical and Testing Center of HUST.

Author information

Authors and Affiliations

Authors

Contributions

Hu Z and Huang L designed the project. Jin H, Hu Z, Li J and Xu Z performed the experiments and analyzed the data. Jin H and Hu Z wrote the paper. Huang L and Zhou J reviewed the manuscript. All authors contributed to the general discussion.

Corresponding author

Correspondence to Liang Huang  (黄亮).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Liang Huang received his BSc degree and PhD degree from Lanzhou University in 2007 and 2013, respectively. He became a principal investigator at Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology in 2016. His current interests focus on salt-assisted synthesis of 2D materials for energy conversion and storage.

Jun Zhou is a professor in WNLO at Huazhong University of Science and Technology. He received his Bachelor’s degree (2001) in materials physics and PhD degree (2007) in materials physics and chemistry from Sun Yat-sen University. He was a visiting student (2005–2006), and a research scientist (2007–2009) at Georgia Institute of Technology. His recent research interest is energy harvesting materials and devices.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Li, J., Xu, Z. et al. Assembly of two-dimensional nanofluidic channel with high proton conductivity using single-layer MnO2 nanosheets. Sci. China Mater. 65, 2578–2584 (2022). https://doi.org/10.1007/s40843-021-1987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1987-4

Keywords

Navigation