Skip to main content
Log in

Spiral effect of helical carbon nanorods boosting electrocatalysis of oxygen reduction reaction

螺旋碳纳米棒促进电化学氧还原反应性能研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Helical metal-organic frameworks (MOFs) were used as templates or precursors to fabricate helical carbon nanorods (HCNRs) for the first time. Helical carbon contains many topological defects such as pentagonal or heptagonal carbons, which have the potential to facilitate oxygen reduction reactions (ORR). HCNRs show more positive onset/half-wave reduction potentials and higher limited current density than straight carbon nanorods (SCNRs). They also exhibit four-electron oxygen reduction in tests of ORR, while the alternative SCNRs prefer a two-electron reduction mechanism. Experimental and theoretical studies reveal that these enhanced ORR activities can be attributed to pentagon/heptagon defects in HCNRs. This work provides an effective strategy to synthesize helical, defect-rich carbon materials and opens up a new perspective for utilization of a spiral effect for the development of more effective electrocatalysts.

摘要

目前螺旋碳纳米材料作为催化电化学反应的催化剂的研究较少. 螺旋碳纳米结构对电催化性能的影响更是不明确. 本文首次报导以螺旋状的金属有机框架化合物为模板高温热解制备螺旋碳纳米棒. 该螺旋碳纳米棒在电催化氧还原反应中展现出比普通碳纳米棒高的催化性能. 本文提出了一个制备螺旋碳纳米棒的简易有效的方法, 并为利用螺旋效应设计高效电催化剂提供了新思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ren Z, Gao PX. A review of helical nanostructures: growth theories, synthesis strategies and properties. Nanoscale, 2014, 6: 9366–9400

    Article  CAS  Google Scholar 

  2. Zhang D, Ren C, Yang W, et al. Helical polymer as mimetic enzyme catalyzing asymmetric aldol reaction. Macromol Rapid Commun, 2012, 33: 652–657

    Article  CAS  Google Scholar 

  3. Reggelin M, Doerr S, Klussmann M, et al. Asymmetric catalysis special feature part I: Helically chiral polymers: A class of ligands for asymmetric catalysis. Proc Natl Acad Sci USA, 2004, 101: 5461–5466

    Article  CAS  Google Scholar 

  4. Chen J, Takenaka N. Helical chiral pyridine N-oxides: A new family of asymmetric catalysts. Chem Eur J, 2009, 15: 7268–7276

    Article  CAS  Google Scholar 

  5. Zheng Y, Lin L, Ye X, et al. Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew Chem Int Ed, 2014, 53: 11926–11930

    Article  CAS  Google Scholar 

  6. Peng X, Komatsu N, Bhattacharya S, et al. Optically active single-walled carbon nanotubes. Nat Nanotech, 2007, 2: 361–365

    Article  CAS  Google Scholar 

  7. Liu S, Duan Y, Feng X, et al. Synthesis of enantiopure carbonaceous nanotubes with optical activity. Angew Chem Int Ed, 2013, 52: 6858–6862

    Article  CAS  Google Scholar 

  8. Cheng J, Le Saux G, Gao J, et al. GoldHelix: gold nanoparticles forming 3D helical superstructures with controlled morphology and strong chiroptical property. ACS Nano, 2017, 11: 3806–3818

    Article  CAS  Google Scholar 

  9. Tang N, Kuo W, Jeng C, et al. Coil-in-coil carbon nanocoils: 11 Gramscale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano, 2010, 4: 781–788

    Article  CAS  Google Scholar 

  10. Choi IY, Jo C, Lim WG, et al. Amorphous tin oxide nanohelix structure based electrode for highly reversible Na-ion batteries. ACS Nano, 2019, 13: 6513–6521

    Article  CAS  Google Scholar 

  11. Liang Z, Fan X, Lei H, et al. Cobalt-nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed, 2018, 57: 13187–13191

    Article  CAS  Google Scholar 

  12. Cheng F, Chen J. Metal—air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev, 2012, 41: 2172–2192

    Article  CAS  Google Scholar 

  13. Wang YJ, Long W, Wang L, et al. Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy Environ Sci, 2018, 11: 258–275

    Article  CAS  Google Scholar 

  14. Tao H, Fan Q, Ma T, et al. Two-dimensional materials for energy conversion and storage. Prog Mater Sci, 2020, 111: 100637

    Article  CAS  Google Scholar 

  15. Fu S, Zhu C, Song J, et al. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv Energy Mater, 2017, 7: 1700363

    Article  CAS  Google Scholar 

  16. Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323: 760–764

    Article  CAS  Google Scholar 

  17. Liu J, Song P, Ning Z, et al. Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction. Electrocatalysis, 2015, 6: 132–147

    Article  CAS  Google Scholar 

  18. Wang DW, Su D. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ Sci, 2014, 7: 576–591

    Article  CAS  Google Scholar 

  19. Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electro-catalysts for fuel cells: Past, present, and future. Adv Mater, 2019, 31: 1804799

    Article  CAS  Google Scholar 

  20. Stamatin SN, Hussainova I, Ivanov R, et al. Quantifying graphitic edge exposure in graphene-based materials and its role in oxygen reduction reactions. ACS Catal, 2016, 6: 5215–5221

    Article  CAS  Google Scholar 

  21. Yan D, Li Y, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv Mater, 2017, 29: 1606459

    Article  CAS  Google Scholar 

  22. Jia Y, Zhang L, Zhuang L, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat Catal, 2019, 2: 688–695

    Article  CAS  Google Scholar 

  23. Amelinckx S, Zhang XB, Bernaerts D, et al. A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science, 1994, 265: 635–639

    Article  CAS  Google Scholar 

  24. Gao R, Wang ZL, Fan S. Kinetically controlled growth of helical and zigzag shapes of carbon nanotubes. J Phys Chem B, 2000, 104: 1227–1234

    Article  CAS  Google Scholar 

  25. Dunlap BI. Connecting carbon tubules. Phys Rev B, 1992, 46: 1933–1936

    Article  CAS  Google Scholar 

  26. Zhu J, Huang Y, Mei W, et al. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew Chem Int Ed, 2019, 58: 3859–3864

    Article  CAS  Google Scholar 

  27. Ihara S, Itoh S, Kitakami JI. Helically coiled cage forms of graphitic carbon. Phys Rev B, 1993, 48: 5643–5647

    Article  CAS  Google Scholar 

  28. Yang F, Wang X, Zhang D, et al. Growing zigzag (16,0) carbon nanotubes with structure-defined catalysts. J Am Chem Soc, 2015, 137: 8688–8691

    Article  CAS  Google Scholar 

  29. Xie C, Yan D, Chen W, et al. Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Mater Today, 2019, 31: 47–68

    Article  CAS  Google Scholar 

  30. Tang C, Wang HF, Chen X, et al. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater, 2016, 28: 6845–6851

    Article  CAS  Google Scholar 

  31. Qin Y, Zhang Z, Cui Z. Helical carbon nanofibers prepared by pyrolysis of acetylene with a catalyst derived from the decomposition of copper tartrate. Carbon, 2003, 41: 3072–3074

    Article  CAS  Google Scholar 

  32. Jin Y, Ren J, Chen J, et al. Controllable preparation of helical carbon nanofibers by CCVD method and their characterization. Mater Res Express, 2018, 5: 015601

    Article  CAS  Google Scholar 

  33. Xia JH, Jiang X, Jia CL. The size effect of catalyst on the growth of helical carbon nanofibers. Appl Phys Lett, 2009, 95: 223110

    Article  CAS  Google Scholar 

  34. Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science, 2013, 341: 974–986

    Article  CAS  Google Scholar 

  35. Zhou HC, Kitagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev, 2014, 43: 5415–5418

    Article  CAS  Google Scholar 

  36. Sun JK, Xu Q. Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci, 2014, 7: 2071–2100

    Article  CAS  Google Scholar 

  37. Chen Y, Ji S, Chen C, et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2018, 2: 1242–1264

    Article  CAS  Google Scholar 

  38. Chen YZ, Zhang R, Jiao L, et al. Metal-organic framework-derived porous materials for catalysis. Coord Chem Rev, 2018, 362: 1–23

    Article  CAS  Google Scholar 

  39. Yang S, Zhao L, Yu C, et al. On the origin of helical mesostructures. J Am Chem Soc, 2006, 128: 10460–10466

    Article  CAS  Google Scholar 

  40. Liu M, Cowley JM. Structures of the helical carbon nanotubes. Carbon, 1994, 32: 393–403

    Article  CAS  Google Scholar 

  41. Taylor KML, Rieter WJ, Lin W. Manganese-based nanoscale metal—organic frameworks for magnetic resonance imaging. J Am Chem Soc, 2008, 130: 14358–14359

    Article  CAS  Google Scholar 

  42. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  43. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  44. Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem, 2012, 33: 580–592

    Article  CAS  Google Scholar 

  45. Zhang L, Zhang M, Wang Y, et al. Graphitized porous carbon micro-spheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries. J Mater Chem A, 2014, 2: 10161–10168

    Article  CAS  Google Scholar 

  46. Venezuela P, Lazzeri M, Mauri F. Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands. Phys Rev B, 2011, 84: 035433

    Article  CAS  Google Scholar 

  47. Long YZ, Duvail JL, Li MM, et al. Electrical conductivity studies on individual conjugated polymer nanowires: two-probe and four-probe results. Nanoscale Res Lett, 2010, 5: 237–242

    Article  CAS  Google Scholar 

  48. Chiu HS, Lin PI, Wu HC, et al. Electron hopping conduction in highly disordered carbon coils. Carbon, 2009, 47: 1761–1769

    Article  CAS  Google Scholar 

  49. Tang YH, Sham TK, Hu YF, et al. Near-edge X-ray absorption fine structure study of helicity and defects in carbon nanotubes. Chem Phys Lett, 2002, 366: 636–641

    Article  CAS  Google Scholar 

  50. Hemraj-Benny T, Banerjee S, Sambasivan S, et al. Near-edge X-ray absorption fine structure spectroscopy as a tool for investigating nanomaterials. Small, 2006, 2: 26–35

    Article  CAS  Google Scholar 

  51. Fischer DA, Wentzcovitch RM, Carr RG, et al. Graphitic interlayer states: A carbon K near-edge X-ray-absorption fine-structure study. Phys Rev B, 1991, 44: 1427–1429

    Article  CAS  Google Scholar 

  52. Ohashi K, Imura H, Mochizuki S, et al. Effect of alkyl substituents on the selective extraction of copper(ll), palladium(ll), gallium(lll) and molybdenum(VI) with novel 8-quinolinol derivatives. Miner Proc Extract Metall Rev, 1997, 17: 169–194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (2018YFA0208600 and 2017YFA0700100), the Key Research Program of Frontier Science, CAS (QYZDJ-SSW-SLH045), the National Natural Science Foundation of China (21671188, 21871263 and 22033008), the Strategic Priority Research Program of CAS (XDB20000000), and the Youth Innovation Promotion Association, CAS (2014265). The authors thank Hefei Synchrotron Radiation Facility for the XANES spectra tests, the Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China for helps in characterizations.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Shi PC, Huang YB, Zhang T and Cao R conceived the project and wrote the manuscript. Shi PC, Liu TT and Yao MS performed the experiments and collected the data. Shi PC, Huang YB and Zhang T analyzed the data. Si DH performed DFT calculations and analyzed the results. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Teng Zhang  (张腾) or Rong Cao  (曹荣).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Peng-Chao Shi is currently a PhD student at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (FJIRSM, CAS). Her research interest is focused on electrocatalytic materials for energy conversion reactions such as ORR, HER and CO2RR.

Teng Zhang obtained his PhD degree from the University of Chicago in 2015 and is currently a professor of FJIRSM, CAS. His research interest is focused on catalytic applications of MOFs and related materials.

Rong Cao obtained his PhD degree from FJIRSM, CAS in 1993. Following post-doctoral experiences in the Hong Kong Polytechnic University and Japan Society for the Promotion of Science Fellowship in Nagoya University, he became a professor at FJIRSM in 1998 and now is the director of FJIRSM. His main research interest includes supramolecular chemistry, inorganic-organic hybrid materials and nanocatalysis.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, PC., Si, DH., Yao, MS. et al. Spiral effect of helical carbon nanorods boosting electrocatalysis of oxygen reduction reaction. Sci. China Mater. 65, 1531–1538 (2022). https://doi.org/10.1007/s40843-021-1919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1919-5

Keywords

Navigation