Skip to main content
Log in

Coordination polymer nanowires/reduced graphene oxide paper as flexible anode for sodium-ion batteries

配位聚合物纳米线/还原氧化石墨烯复合柔性薄 膜电极的构筑及储钠性能研究

  • Letter
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

构建基于有机材料的高性能柔性储钠电极面临诸多挑战. 本 工作通过可控组装及还原的方式, 实现了铁基配位聚合物纳米线/还原氧化石墨烯柔性薄膜的构筑. 多维复合薄膜可直接用作钠离 子电池自支撑负极, 且具有较高的储钠容量(200 mA g−1电流密度 下可逆容量为319 mA h g−1)和优异的倍率性能(3000 mA g−1大电 流密度下比容量可保持在∼120 mA h g−1). 研究表明有机配体(氨 三乙酸)中的羧基及氨基为储钠活性位点, 而配位金属离子(Fe2+)不 参与电化学反应.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Liu Y, Sun Z, Tan K, et al. Recent progress in flexible non-lithium based rechargeable batteries. J Mater Chem A, 2019, 7: 4353–4382

    Article  CAS  Google Scholar 

  2. Deng J, Luo WB, Chou SL, et al. Sodium-ion batteries: From academic research to practical commercialization. Adv Energy Mater, 2018, 8: 1701428

    Article  Google Scholar 

  3. Jin T, Han Q, Wang Y, et al. 1D nanomaterials: Design, synthesis, and applications in sodium-ion batteries. Small, 2018, 14: 1703086

    Article  Google Scholar 

  4. Huang ZD, Zhang TT, Lu H, et al. Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries. Sci China Mater, 2018, 61: 1057–1066

    Article  CAS  Google Scholar 

  5. Li D, Zhao X, Yu R, et al. Formation of multi-shelled nickel-based sulfide hollow spheres for rechargeable alkaline batteries. Inorg Chem Front, 2018, 5: 535–540

    Article  CAS  Google Scholar 

  6. Zhao Q, Lu Y, Chen J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv Energy Mater, 2017, 7: 1601792

    Article  Google Scholar 

  7. Lee S, Kwon G, Ku K, et al. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv Mater, 2018, 30: 1704682

    Article  Google Scholar 

  8. Kim J, Kim JH, Ariga K. Redox-active polymers for energy storage nanoarchitectonics. Joule, 2017, 1: 739–768

    Article  CAS  Google Scholar 

  9. Zhou W, Lv S, Liu X, et al. A directly grown pristine Cu-CAT metal-organic framework as an anode material for high-energy sodium-ion capacitors. Chem Commun, 2019, 55: 11207–11210

    Article  CAS  Google Scholar 

  10. Batten SR, Champness NR, Chen XM, et al. Coordination polymers, metal-organic frameworks and the need for terminology guidelines. CrystEngComm, 2012, 14: 3001–3004

    Article  CAS  Google Scholar 

  11. Lee HW, Wang RY, Pasta M, et al. Manganese hexacyanoman-ganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat Commun, 2014, 5: 5280

    Article  CAS  Google Scholar 

  12. Dong C, Xu L. Cobalt- and cadmium-based metal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries. ACS Appl Mater Interfaces, 2017, 9: 7160–7168

    Article  CAS  Google Scholar 

  13. Park J, Lee M, Feng D, et al. Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J Am Chem Soc, 2018, 140: 10315–10323

    Article  CAS  Google Scholar 

  14. You Y, Wu XL, Yin YX, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci, 2014, 7: 1643–1647

    Article  CAS  Google Scholar 

  15. Ren W, Qin M, Zhu Z, et al. Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett, 2017, 17: 4713–4718

    Article  CAS  Google Scholar 

  16. Wu S, Wang W, Li M, et al. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nat Commun, 2016, 7: 13318

    Article  CAS  Google Scholar 

  17. Kim JK, Kim Y, Park S, et al. Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. Energy Environ Sci, 2016, 9: 1264–1269

    Article  CAS  Google Scholar 

  18. Wang H, Hu P, Yang J, et al. Renewable-juglone-based high-performance sodium-ion batteries. Adv Mater, 2015, 27: 2348–2354

    Article  CAS  Google Scholar 

  19. Ba D, Li Y, Sun Y, et al. Directly grown nanostructured electrodes for high-power and high-stability alkaline nickel/bismuth batteries. Sci China Mater, 2018, 62: 487–496

    Article  Google Scholar 

  20. Jin T, Han Q, Jiao L. Binder-free electrodes for advanced sodium-ion batteries. Adv Mater, 2019, 46: 1806304

    Google Scholar 

  21. Tan S, Jiang Y, Wei Q, et al. Multidimensional synergistic nanoarchitecture exhibiting highly stable and ultrafast sodium-ion storage. Adv Mater, 2018, 30: 1707122

    Article  Google Scholar 

  22. Liu Y, Yang Y, Wang X, et al. Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl Mater Interfaces, 2017, 9: 15484–15491

    Article  CAS  Google Scholar 

  23. Gui Q, Ba D, Zhao Z, et al. Synergistic coupling of ether electrolyte and 3D electrode enables titanates with extraordinary coulombic efficiency and rate performance for sodium-ion capacitors. Small Methods, 2019, 3: 1800371

    Article  Google Scholar 

  24. Li C, Yin X, Chen L, et al. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties. Chem Eur J, 2010, 16: 5215–5221

    Article  CAS  Google Scholar 

  25. Gu X, Yan C, Yan L, et al. Carbonates (bicarbonates)/reduced graphene oxide as anode materials for sodium-ion batteries. J Mater Chem A, 2017, 5: 24645–24650

    Article  CAS  Google Scholar 

  26. Kim SH, Lee HH, Kim JM, et al. Heteromat-framed metal-organic coordination polymer anodes for high-performance lithium-ion batteries. Energy Storage Mater, 2019, 19: 130–136

    Article  Google Scholar 

  27. Sharma N, Szunerits S, Boukherroub R, et al. Dual-ligand Fe-metal organic framework based robust high capacity Li ion battery anode and its use in a flexible battery format for electro-thermal heating. ACS Appl Energy Mater, 2019, 2: 4450–4457

    Article  CAS  Google Scholar 

  28. Li C, Lou X, Shen M, et al. High anodic performance of Co 1,3,5-benzenetricarboxylate coordination polymers for Li-ion battery. ACS Appl Mater Interfaces, 2016, 8: 15352–15360

    Article  CAS  Google Scholar 

  29. He H, Sun D, Tang Y, et al. Understanding and improving the initial coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater, 2019, 23: 233–251

    Article  Google Scholar 

  30. Wang S, Wang L, Zhu Z, et al. All organic sodium-ion batteries with Na4C8H2O6. Angew Chem, 2014, 126: 6002–6006

    Article  Google Scholar 

  31. Deng W, Qian J, Cao Y, et al. Graphene-wrapped Na2C12H6O4 nanoflowers as high performance anodes for sodium-ion batteries. Small, 2016, 12: 583–587

    Article  CAS  Google Scholar 

  32. Wu X, Ma J, Ma Q, et al. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. J Mater Chem A, 2015, 3: 13193–13197

    Article  CAS  Google Scholar 

  33. Zhu H, Yin J, Zhao X, et al. Humic acid as promising organic anodes for lithium/sodium ion batteries. Chem Commun, 2015, 51: 14708–14711

    Article  CAS  Google Scholar 

  34. Zhao Q, Gaddam RR, Yang D, et al. Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries. Electrochim Acta, 2018, 265: 702–708

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51772127 and 51772131), Taishan Scholars (ts201712050), Major Program of Shandong Province Natural Science Foundation (ZR2018ZB0317), the Natural Science Doctoral Foundation of Shandong Province (ZR2019BEM038) and the Natural Science Doctoral Foundation of the University of Jinan (XBS1830).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu  (刘洋) or Changzhou Yuan  (原长洲).

Additional information

Author contributions

Sun Z, Tan K and Hou L performed the experiments; Liu Y and Yuan C designed and engineered the samples, and wrote the paper. All authors contributed to the general discussion.

Conflict of interest

The authors declare no conflict of interest.

Zehang Sun received a BE degree from Liao-Cheng University in 2017. Currently, he is pursuing his MSc degree at the University of Jinan. His research interests focus on the structural design and electrochemical analyses of electrode materials for alkali-ion batteries.

Yang Liu obtained his PhD degree in chemical technology from Dalian University of Technology in 2017. He then joined the University of Jinan in September 2017. His research focuses on lithium ion batteries and the potential alternative energy storage devices.

Changzhou Yuan received a PhD from Nanjing University of Aeronautics and Astronautics in 2009. He is a distinguished professor of Taishan Scholar in the School of Materials Science and Engineering, University of Jinan. He is a Highly Cited Researcher (in Materials Science/Cross-field) by Clarivate Analysis from 2016 to 2019, and a Most Cited Chinese Researchers (in materials science) by Elsevier in 2016–2018. His current research focuses on the design and synthesis of micro/nano-materials for electrochemical energy-related applications.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Tan, K., Hou, L. et al. Coordination polymer nanowires/reduced graphene oxide paper as flexible anode for sodium-ion batteries. Sci. China Mater. 63, 1966–1972 (2020). https://doi.org/10.1007/s40843-019-1241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1241-9

Navigation