Skip to main content
Log in

Abstract

In this paper, we study Triebel–Lizorkin-type spaces with variable smoothness and integrability. We show that our space is well-defined, i.e., independent of the choice of basis functions and we obtain their atomic characterization. Moreover, the Sobolev embeddings for these function spaces are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, A., Caetano, A.: Variable exponent Besov–Morrey spaces, arXiv:1807.10687

  2. Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, 1628–1655 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Almeida, A., Samko, S.: Characterization of Riesz and Bessel potentials on variable Lebesgue spaces. J. Function Spaces Appl. 4(2), 113–144 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Besov, O.: Equivalent normings of spaces of functions of variable smoothness. Proc. Steklov Inst. Math. 243(4), 80–88 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Brezis, H., Mironescu, P.: Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1, 387–404 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators in variable \(L^{p}\) spaces. Ann. Acad. Sci. Fenn. Math 13, 239–264 (2006)

    MATH  Google Scholar 

  7. Diening, L., Harjulehto, P., Hästö, P., Růž ička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Berlin (2011)

  8. Diening, L.: Maximal function on generalized Lebesque spaces \( L^{p(\cdot )}\). Math. Inequal. Appl. 7(2), 245–253 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34(2), 503–522 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256(6), 1731–1768 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Drihem, D.: Characterizations of Besov-type and Triebel–Lizorkin-type spaces by differences. J. Funct. Spaces Appl. (2012), Article ID 328908, 24 pp

  12. Drihem, D.: Variable Besov-types spaces, preprint

  13. Drihem, D.: Some embeddings and equivalent norms of the \( {\cal{L}}_{p, q}^{\lambda, s}\) spaces. Funct. Approx. Comment. Math. 41(1), 15–40 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Drihem, D.: Atomic decomposition of Besov spaces with variable smoothness and integrability. J. Math. Anal. Appl. 389(1), 15–31 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Drihem, D.: Atomic decomposition of Besov-type and Triebel–Lizorkin-type spaces. Sci. China. Math. 56(5), 1073–1086 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Drihem, D.: Some properties of variable Besov-type spaces. Funct. Approx. Comment. Math. 52(2), 193–221 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Drihem, D.: Some characterizations of variable Besov-type spaces. Ann. Funct. Anal. 6(4), 255–288 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Frazier, M., Jawerth, B.: A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    MathSciNet  MATH  Google Scholar 

  20. Gurka, P., Harjulehto, P., Nekvinda, A.: Bessel potential spaces with variable exponent. Math. Inequal. Appl. 10(3), 661–676 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Hedberg, L., Netrusov, Y.: An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation, Mem. Am. Math. Soc. 188, vi+97 pp (2007)

    MathSciNet  MATH  Google Scholar 

  22. Izuki, M., Noi, T.: Duality of Besov, Triebel–Lizorkin and Herz spaces with variable exponents. Rend. Circ. Mat. Palermo. 63, 221–245 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Johnsen, J., Sickel, W.: A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin–Triebel spaces with mixed norms. J. Funct. Spaces Appl. 5, 183–198 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Kempka, H., Vybíral, J.: Spaces of variable smoothness and integrability: characterizations by local means and ball means of differences. J. Fourier Anal. Appl. 18(4), 852–891 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Kempka, H., Vybíral, J.: A note on the spaces of variable integrability and summability of Almeida and Hästö. Proc. Am. Math. Soc. 141(9), 3207–3212 (2013)

    MATH  Google Scholar 

  26. Kováčik, O., Rákosník, J.: On spaces \( L^{p(x)}\) and \(W^{1, p(x)}\). Czechoslov. Math. J. 41(116), 592–618 (1991)

    MATH  Google Scholar 

  27. Leopold, H.-G.: On Besov spaces of variable order of differentiation. Z. Anal. Anwen-dungen 8(1), 69–82 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Leopold, H.-G.: Interpolation of Besov spaces of variable order of differentiation. Arch. Math. (Basel) 53(2), 178–187 (1989)

    MathSciNet  MATH  Google Scholar 

  29. Leopold, H.-G.: On function spaces of variable order of differentiation. Forum Math. 3, 633–644 (1991)

    MathSciNet  MATH  Google Scholar 

  30. Leopold, H.-G.: Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration. Czechoslov. Math. J 49(3), 633–644 (1999). (124)

    MathSciNet  MATH  Google Scholar 

  31. Leopold, H.-G., Schrohe, E.: Trace theorems for Sobolev spaces of variable order of differentiation. Math. Nachr. 179, 223–245 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces. Dissertationes Math. (Rozprawy Mat.) 489 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel–Lizorkin-type spaces. J. Math. Anal. Appl. 363, 73–85 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Sickel, W.: Smoothness spaces related to Morrey spaces-a survey. I. Eurasian Math. J 3(3), 110–149 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Sickel, W.: Smoothness spaces related to Morrey spaces-a survey. II. Eurasian Math. J. 4(1), 82–124 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Triebel, H.: Theory of Function Spaces. Birkhäuser Verlag, Basel (1983)

    MATH  Google Scholar 

  37. Triebel, H.: Theory of Function Spaces II. Birkhäuser Verlag, Basel (1992)

    MATH  Google Scholar 

  38. Triebel, H.: Fractals and Spectra. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

  39. Tyulenev, A.I.: Some new function spaces of variable smoothness. Sbornik Math. 206, 849–891 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Tyulenev, A.I.: On various approaches to Besov-type spaces of variable smoothness. J. Math. Anal. Appl. 451, 371–392 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Vybíral, J.: Sobolev and Jawerth embeddings for spaces with variable smoothness and integrability. Ann. Acad. Sci. Fenn. Math. 34(2), 529–544 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Xu, J.: Variable Besov and Triebel–Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33, 511–522 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Xu, J.: An atomic decomposition of variable Besov and Triebel–Lizorkin spaces. Armen. J. Math. 2(1), 1–12 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and \(Q\) spaces. J. Funct. Anal. 255, 2760–2809 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Yang, D., Yuan, W.: Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generalized Carleson measure spaces. Appl. Anal. 92(3), 549–561 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Yang, D., Zhuo, C., Yuan, W.: Triebel–Lizorkin-type spaces with variable exponents. Banach J. Math. Anal. 9(2), 146–202 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269(6), 1840–1898 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)

  49. Yuan, W., Sickel, W., Yang, D.: On the coincidence of certain approaches to smoothness spaces related to Morrey spaces. Math. Nachr. 286(14–15), 1571–1584 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Yuan, W., Haroske, D., Skrzypczak, L., Yang, D.: Embedding properties of Besov-type spaces. Appl. Anal. 94(2), 318–340 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for the valuable comments which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douadi Drihem.

Additional information

Communicated by Pedro Tradacete.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we present more technical proofs of the Lemmas.

Proof of Lemma 3

By the scaling argument, we see that it suffices to consider when \(\left\| \left( f_{v}\right) _{v}\right\| _{L_{p(\cdot )}^{\tau (\cdot )}(\ell ^{q(\cdot )})}\le 1\) and show that for any dyadic cube P

$$\begin{aligned} \left\| \left( \sum _{v=v_{P}^{+}}^{\infty }\left| \frac{\eta _{v,m}*\left| f_{v}\right| }{|P|^{\tau (\cdot )}}\right| ^{q(\cdot )} \right) ^{1/q(\cdot )}\chi _{P}\right\| _{p(\cdot )}\lesssim 1. \end{aligned}$$
(22)

We will study two cases in particular.

Case 1.\(|P|>1\). Let \(Q_{v}\subset P\) be a cube, with \( l(Q_{v})=2^{-v}\) and \(x\in Q_{v}\subset P\). We have

$$\begin{aligned}&\eta _{v,m}*\left| f_{v}\right| (x) \nonumber \\&\quad =2^{vn}\int _{{\mathbb {R}}^{n}}\frac{\left| f_{v}(z)\right| }{\left( 1+2^{v}\left| x-z\right| \right) ^{m}}\hbox {d}z \nonumber \\&\quad =\int _{3Q_{v}}\cdot \cdot \cdot \hbox {d}z+\sum _{k=(k_{1},\ldots ,k_{n})\in {\mathbb {Z}} ^{n},\max _{i=1,\ldots ,n}|k_{i}|\ge 2}\int _{Q_{v}+kl(Q_{v})}\cdot \cdot \cdot \hbox {d}z \nonumber \\&\quad =J_{v}^{1}(f_{v}\chi _{3Q_{v}})(x)+\sum _{k\in {\mathbb {Z}}^{n},|k|\ge 2}J_{v,k}^{2}(f_{v}\chi _{Q_{v}+kl(Q_{v})})(x). \end{aligned}$$
(23)

Let \(z\in Q_{v}+kl(Q_{v})\) with \(k\in {\mathbb {Z}}^{n}\) and \(|k|>4\sqrt{n}\). Then \(\left| x-z\right| \ge \left| k\right| 2^{-v-1}\) and

$$\begin{aligned} J_{v,k}^{2}(f_{v}\chi _{Q_{v}+kl(Q_{v})})(x)\lesssim \left| k\right| ^{-m}M_{Q_{v}+kl(Q_{v})}\left( f_{v}\right) . \end{aligned}$$

Let \(d>0\) be such that \(\tau ^{+}<d<\tau ^{-}\min \left( p^{-},q^{-}\right) \) . Therefore, the left-hand side of (22) is bounded by

$$\begin{aligned}&\sum _{k\in {\mathbb {Z}}^{n},|k|\le 4\sqrt{n}}\left\| \left( \sum _{v=0}^{\infty }\left| \frac{g_{v,k}}{|P|^{\tau (\cdot )}}\right| ^{q(\cdot )}\right) ^{1/q(\cdot )}\chi _{P}\right\| _{p(\cdot )} \nonumber \\&\quad +\sum _{k\in {\mathbb {Z}}^{n},|k|>4\sqrt{n}}\left| k\right| ^{w\frac{ \tau ^{+}}{d}-m+n(1+\frac{1}{t^{-}})\tau ^{+}}(\log \left| k\right| )^{\frac{\tau ^{+}}{d}}\left\| \left( \sum _{v=0}^{\infty }\left| \frac{ b_{k}g_{v,k}}{|P|^{\tau (\cdot )}}\right| ^{q(\cdot )}\right) ^{1/q(\cdot )}\chi _{P}\right\| _{p(\cdot )},\nonumber \\ \end{aligned}$$
(24)

where

$$\begin{aligned} g_{v,k}=\left\{ \begin{array}{lll} M_{3Q_{v}}\left( f_{v}\right) , &{} \text {if} &{} k=0 \\ M_{Q_{v}+kl(Q_{v})}\left( f_{v}\right) , &{} \text {if} &{} 0<|k|\le 4\sqrt{n}\\ M_{Q_{v}+kl(Q_{v})}\left( \left| k\right| ^{-n\left( 1+1/t\left( \cdot \right) \right) \tau \left( \cdot \right) }f_{v}\right) , &{} \text {if} &{} |k|>4, \end{array} \right. \end{aligned}$$

with \(b_{k}=(|k|^{w}\log \left| k\right| )^{-\tau (\cdot )/d}\) and \( \frac{1}{d}=\frac{1}{p(\cdot )\tau (\cdot )}+\frac{1}{t(\cdot )}\). By similarity we only estimate the second quasi-norm in (24) . This term is bounded if and only if

$$\begin{aligned} \left\| \left( \sum _{v=0}^{\infty }\left| \frac{(b_{k}g_{v,k})^{d/\tau (\cdot )}}{ |P|^{d}}\right| ^{q(\cdot )\tau (\cdot )/d}\right) ^{d/\tau (\cdot )q(\cdot )}\chi _{P}\right\| _{p(\cdot )\tau (\cdot )/d}\lesssim 1. \end{aligned}$$
(25)

By Hölder’s inequality,

$$\begin{aligned} \left| Q(x,\left| k\right| 2^{1-v})\right| M_{Q(x,\left| k\right| 2^{1-v})}\left( \left| k\right| ^{-n\left( 1+1/t\left( \cdot \right) \right) d}\left| f_{v}\right| ^{d/\tau \left( \cdot \right) }\right) \end{aligned}$$

can be estimated from above by

$$\begin{aligned} \Big \Vert \frac{\left| f_{v}\right| ^{1/\tau (\cdot )}}{|Q(x,\left| k\right| 2^{1-v})|}\chi _{Q(x,\left| k\right| 2^{1-v})}\Big \Vert _{p(\cdot )\tau (\cdot )}^{d}\Big \Vert |Q(x,\left| k\right| 2^{1-v})|\left| k\right| ^{-n\left( 1+1/t(\cdot )\right) }\chi _{Q(x,\left| k\right| 2^{1-v})}\Big \Vert _{t(\cdot )}^{d}. \end{aligned}$$

The second quasi-norm is bounded. The first term is bounded if and only if

$$\begin{aligned} \Big \Vert \frac{f_{v}}{|Q(x,\left| k\right| 2^{1-v})|^{\tau (\cdot )}} \chi _{Q(x,\left| k\right| 2^{1-v})}\Big \Vert _{p(\cdot )}\lesssim 1, \end{aligned}$$

which follows since \(\left\| \left( f_{v}\right) _{v}\right\| _{L_{p(\cdot )}^{\tau (\cdot )}(\ell ^{q(\cdot )})}\le 1\). Therefore we can apply Theorem 1,

$$\begin{aligned}&\Big (M_{Q(x,\left| k\right| 2^{1-v})}\left( \left| k\right| ^{-n\left( 1+1/t\left( \cdot \right) \right) \tau \left( \cdot \right) }f_{v}\right) \Big )^{d/\tau \left( x\right) } \\&\quad \le M_{Q(x,\left| k\right| 2^{1-v})}\Big (\left| \left| k\right| ^{-n\left( 1+1/t\left( \cdot \right) \right) \tau \left( \cdot \right) }f_{v}\right| ^{d/\tau \left( \cdot \right) }\Big )+\min (1,\left| k\right| ^{ns}2^{n\left( 1-v\right) s})\omega (x) \end{aligned}$$

for any \(s>0\) large enough, where

$$\begin{aligned} \omega (x)= & {} (e+\left| x\right| )^{-s}+M_{Q(x,\left| k\right| 2^{1-v})}((e+\left| \cdot \right| )^{-s})\left( x\right) \\\le & {} (e+\left| x\right| )^{-s}+{\mathcal {M}}\left( (e+\left| x\right| )^{-s}\right) (x) \\= & {} h(x). \end{aligned}$$

Observing that \(Q_{v}+kl(Q_{v})\subset Q(x,\left| k\right| 2^{1-v})\) . Therefore \(\left( g_{v,k}\right) ^{d/\tau (\cdot )}\) can be estimated by

$$\begin{aligned} c\text { }M_{Q(x,\left| k\right| 2^{1-v})}\left( \left| k\right| ^{-nd}\left| f_{v}\right| ^{d/\tau \left( \cdot \right) }\right) +\sigma _{v,k}\text { }h, \end{aligned}$$

where

$$\begin{aligned} \sigma _{v,k}=\left\{ \begin{array}{lll} 1 &{} \text {if} &{} 2^{v}\le 2\left| k\right| \\ \left| k\right| ^{ns}2^{-vns} &{} \text {if} &{} 2^{v}>2\left| k\right| . \end{array} \right. \end{aligned}$$

Therefore, the quantity \(\Big (\cdot \cdot \cdot \Big )^{d/\tau (\cdot )q(\cdot )}\) of the term (25) is bounded by

$$\begin{aligned}&|k|^{-w}\left( \sum _{v=0}^{\infty }\left| M_{Q(\cdot ,\left| k\right| 2^{1-v})}\left( \frac{\left| f_{v}\right| ^{d/\tau \left( \cdot \right) }}{\left| k\right| ^{nd}|P|^{d}}\chi _{Q(\cdot ,\left| k\right| 2^{-v+1})}\right) \right| ^{q(\cdot )\tau (\cdot )/d}\right) ^{d/\tau (\cdot )q(\cdot )} \nonumber \\&\quad +\frac{1}{\log \left| k\right| }\left( \sum _{v=0}^{\infty }\left( \sigma _{v,k}\left| h\right| \right) ^{q(\cdot )\tau (\cdot )/d}\right) ^{d/\tau (\cdot )q(\cdot )}. \end{aligned}$$
(26)

The first term is bounded by

$$\begin{aligned} \left( \sum _{v=0}^{\infty }\left| \eta _{v,w}*\left( \frac{\left| f_{v}\right| ^{d/\tau \left( \cdot \right) }}{\left| k\right| ^{nd}|P|^{d}}\chi _{Q(\cdot ,\left| k\right| 2^{1-v})}\right) \right| ^{q(\cdot )\tau (\cdot )/d}\right) ^{d/\tau (\cdot )q(\cdot )}. \end{aligned}$$

where \(w>n\). Applying Theorem 2, the \(L^{p(\cdot )\tau (\cdot )/d}\)-norm of this expression is bounded by

$$\begin{aligned} \left\| \left( \sum _{v=0}^{\infty }\left| \frac{\left| k\right| ^{-n\tau (\cdot )}f_{v}}{|P|^{\tau (\cdot )}}\right| ^{q(\cdot )}\chi _{Q(\cdot ,\left| k\right| 2^{1-v})}\right) ^{d/\tau (\cdot )q(\cdot )}\right\| _{p(\cdot )\tau (\cdot )/d}. \end{aligned}$$

Observing that \(Q(\cdot ,\left| k\right| 2^{-v+1})\subset Q(c_{P},\left| k\right| 2^{-v_{P}+1})\) and the measure of the last cube is greater than 1, the last norm is bounded by 1. The second sum in (26) can be estimated by

$$\begin{aligned} c\left| h\right| \left( \sum _{v\ge 0,2^{v}\le 2\left| k\right| }\frac{1}{\log \left| k\right| }+\sum _{v\ge 0,2^{v}>2\left| k\right| }\Big (\frac{2^{v}}{\left| k\right| } \Big )^{-ns}\right) \lesssim \left| h\right| . \end{aligned}$$

This expression, with power \(d/\tau (\cdot )q(\cdot )\), in the \(L^{p(\cdot )\tau (\cdot )/d}\)-norm is bounded by 1. Therefore, the second sum in (24) is bounded by taking m large enough such that \( m>2n\tau ^{+}+n+w\), with \(w>n\).

Case 2.\(|P|\le 1\). As before,

$$\begin{aligned} \eta _{v,m}*\left| f_{v}\right| (x)\lesssim J_{v}^{1}(f_{v}\chi _{3P})(x)+\sum _{k\in {\mathbb {Z}}^{n},|k|\ge 2}J_{v,k}^{2}(f_{v}\chi _{P+kl(P)})(x). \end{aligned}$$

We see that

$$\begin{aligned} J_{v}^{1}(f_{v}\chi _{3P})(x)\lesssim \eta _{v,m}*\left( \left| f_{v}\right| \chi _{3P}\right) (x). \end{aligned}$$

Since \(\tau \) is log-Hölder continuous,

$$\begin{aligned} \left| P\right| ^{-\tau (x)}\le c\left| P\right| ^{-\tau (y)}(1+2^{v_{P}}\left| x-y\right| )^{c_{\log }\left( \tau \right) }\le c\left| P\right| ^{-\tau (y)}(1+2^{v}\left| x-y\right| )^{c_{\log }\left( \tau \right) } \end{aligned}$$

for any \(x\in P\) and any \(y\in 3P\). Hence

$$\begin{aligned} \left| P\right| ^{-\tau (x)}J_{v}^{1}(f_{v}\chi _{3P})(x)\lesssim \eta _{v,m-c_{\log }\left( \tau \right) }*\left( \left| P\right| ^{-\tau (\cdot )}\left| f_{v}\right| \chi _{3P}\right) (x). \end{aligned}$$

Also, we have

$$\begin{aligned} \left| P\right| ^{-\tau (x)}J_{v,k}^{2}(f_{v}\chi _{P+kl(P)})(x)\lesssim \eta _{v,m-c_{\log }\left( \tau \right) }*\left( \left| P\right| ^{-\tau (\cdot )}\left| f_{v}\right| \chi _{P+kl(P)}\right) (x) \end{aligned}$$

for \(x\in P\) and \(z\in P+kl(P)\) with \(k\in {\mathbb {Z}}^{n}\) and \(|k|>4\sqrt{n} \). Our estimate follows by Theorem 2. The proof is complete. \(\square \)

Proof of Lemma 15

Obviously, \(\left\| \lambda \right\| _{{\mathfrak {f}}_{p\left( \cdot \right) ,q\left( \cdot \right) }^{\alpha \left( \cdot \right) ,\tau (\cdot )}}\le \left\| \lambda _{r,d}^{*}\right\| _{{\mathfrak {f}}_{p\left( \cdot \right) ,q\left( \cdot \right) }^{\alpha \left( \cdot \right) ,\tau (\cdot )}}\). Let us prove the converse inequality. By the scaling argument, it suffices to consider the case \(\left\| \lambda \right\| _{{\mathfrak {f}}_{p\left( \cdot \right) ,q\left( \cdot \right) }^{\alpha \left( \cdot \right) ,\tau (\cdot )}}\le 1\) and show that the modular of a the sequence on the left-hand side is bounded. It suffices to prove that

$$\begin{aligned} \left\| \left( \sum _{v=v_{P}^{+}}^{\infty }\left| \frac{\sum _{m\in {\mathbb {Z}} ^{n}}2^{v(\alpha (\cdot ) +n/2)}\lambda _{v,m,r,d}^{*}\chi _{v,m}}{|P|^{\tau (\cdot ) }}\right| ^{q(\cdot )}\right) ^{1/q(\cdot )}\chi _{P}\right\| _{p(\cdot )}\lesssim 1 \end{aligned}$$
(27)

for any dyadic cube \(P\in {\mathcal {Q}}\). For each \(k\in {\mathbb {N}}_{0}\) we define \(\varOmega _{k}:=\{h\in {\mathbb {Z}}^{n}:2^{k-1}<2^{v}\left| 2^{-v}h-2^{-v}m\right| \le 2^{k}\}\) and \(\varOmega _{0}:=\{h\in {\mathbb {Z}} ^{n}:2^{v}\left| 2^{-v}h-2^{-v}m\right| \le 1\}\). Then for any \( x\in Q_{v,m}\cap P\), \(\sum _{h\in {\mathbb {Z}}^{n}}\frac{2^{vr\alpha \left( x\right) }|\lambda _{v,h}|^{r}}{(1+2^{v}|2^{-v}h-2^{-v}m|)^{d}}\) can be rewritten as

$$\begin{aligned}&\sum _{k=0}^{\infty }\sum _{h\in \varOmega _{k}}\frac{2^{vr\alpha \left( x\right) }\left| \lambda _{v,h}\right| ^{r}}{\left( 1+2^{v}\left| 2^{-v}h-2^{-v}m\right| \right) ^{d}} \nonumber \\&\quad \lesssim \sum _{k=0}^{\infty }2^{-dk}\sum _{h\in \varOmega _{k}}2^{vr\alpha \left( x\right) }\left| \lambda _{v,h}\right| ^{r} \nonumber \\&\quad =\sum _{k=0}^{\infty }2^{(n-d)k+(v-k)n+vr\alpha \left( x\right) }\int \limits _{\cup _{z\in \varOmega _{k}}Q_{v,z}}\sum _{h\in \varOmega _{k}}\left| \lambda _{v,h}\right| ^{r}\chi _{v,h}(y)\hbox {d}y. \end{aligned}$$
(28)

Let \(x\in Q_{v,m}\cap P\) and \(y\in \cup _{z\in \varOmega _{k}}Q_{v,z}\), then \( y\in Q_{v,z}\) for some \(z\in \varOmega _{k}\) and \(2^{k-1}<2^{v}\left| 2^{-v}z-2^{-v}m\right| \le 2^{k}\). From this it follows that y is located in some cube \(Q(x,2^{k-v+3})\). In addition, from the fact that

$$\begin{aligned} \left| y_{i}-(c_{P})_{i}\right| \le \left| y_{i}-x_{i}\right| +\left| x_{i}-(c_{P})_{i}\right| \le 2^{k-v+2}+2^{-v_{P}-1}<2^{k-v_{P}+3},\text { }i=1,\ldots ,n, \end{aligned}$$

we have y is located in some cube \(Q(c_{P},2^{k-v_{P}+4})\). Since \(\alpha \) is log-Hölder continuous we can prove that

$$\begin{aligned} 2^{v(\alpha \left( x\right) -\alpha \left( y\right) )}\lesssim \left\{ \begin{array}{ccc} 2^{c_{\log }(\alpha )k} &{} \text {if} &{} k<\max (0,v-h_{n}) \\ 2^{(\alpha ^{+}-\alpha ^{-})k} &{} \text {if} &{} k\ge \max (0,v-h_{n}), \end{array} \right. \end{aligned}$$

with \(h_{n}\in {\mathbb {N}}_{0}\) and \(c>0\) not depending on v and k. Therefore, (28) does not exceed

$$\begin{aligned}&c\sum _{k=0}^{\infty }2^{(n-d+a)k+(v-k)n}\int \limits _{Q(x,2^{k-v+3})}2^{v\alpha \left( y\right) r}\sum _{h\in \varOmega _{k}}\left| \lambda _{v,h}\right| ^{r}\chi _{v,h}(y)\chi _{{Q(c_{P},2^{k-v_{P}+4})}}(y)\hbox {d}y \\&\quad \lesssim \sum _{k=0}^{\infty }2^{(n-d+a)k}M_{{Q(x,2^{k-v+3})}}\left( \sum _{h\in \varOmega _{k}}2^{v\alpha \left( \cdot \right) r}\left| \lambda _{v,h}\right| ^{r}\chi _{v,h}\chi _{{Q(c_{P},2^{k-v_{P}+4})}}\right) , \end{aligned}$$

where \(a=\max \left( c_{\log }(\alpha ),\alpha ^{+}-\alpha ^{-}\right) \). To prove (27) we can distinguish two cases:

Case 1.\(|P|>1\). The left-hand side of (27) is bounded by 1 if

$$\begin{aligned} c\sum _{k=0}^{\infty }2^{\varrho k}\left\| \left( \sum _{v=0}^{\infty }\left( \frac{ M_{{Q(\cdot ,2^{k-v+3})}}(2^{-kn\left( r+1/t\left( \cdot \right) \right) \tau (\cdot ) }g_{v,k,v_{P}})}{|P|^{r\tau (\cdot ) }} \right) ^{q\left( \cdot \right) /r}\right) ^{r/q (\cdot ) }\chi _{P} \right\| _{p(\cdot )/r}\lesssim 1, \nonumber \\ \end{aligned}$$
(29)

with

$$\begin{aligned} g_{v,k,v_{P}}=\sum _{h\in \varOmega _{k}}2^{v(\alpha \left( \cdot \right) +n/2)r}\left| \lambda _{v,h}\right| ^{r}\chi _{v,h}\chi _{{ Q(c_{P},2^{k-v_{P}+4})}} \end{aligned}$$

and

$$\begin{aligned} \varrho =n-d+a+nr\tau ^{+}+n\frac{\tau ^{+}}{t^{-}}. \end{aligned}$$

Let us prove that

$$\begin{aligned} \left\| \left( \sum _{v=0}^{\infty }\left( \frac{\omega _{k}M_{{Q(\cdot ,2^{k-v+3})} }(2^{-kn\left( r+1/t\left( \cdot \right) \right) \tau \left( \cdot \right) }g_{v,k,v_{P}})}{|P|^{r\tau (\cdot ) }}\right) ^{q (\cdot ) /r}\right) ^{r/q (\cdot ) }\chi _{P}\right\| _{p(\cdot )/r}\lesssim 1 \end{aligned}$$

for any \(k\in {\mathbb {N}}_{0}\) and any \(P\in {\mathcal {Q}}\), where

$$\begin{aligned} \omega _{k}=\frac{1}{2^{(w-n-\frac{n\sigma }{t^{+}})k}+2^{kns}},\quad w,s>0. \end{aligned}$$

This is equivalent to

$$\begin{aligned} \left\| \left( \sum _{v=0}^{\infty }\left( \frac{\left( \omega _{k}M_{{Q(\cdot ,2^{k-v+3})}}(2^{-kn\left( r+1/t\left( \cdot \right) \right) \tau (\cdot ) }g_{v,k,v_{P}})\right) ^{\frac{\sigma }{\tau \left( \cdot \right) }}}{|P|^{r\sigma }}\right) ^{\frac{q\left( \cdot \right) \tau \left( \cdot \right) }{r\sigma }}\right) ^{\frac{\sigma r}{q\left( \cdot \right) \tau \left( \cdot \right) }}\right\| _{\frac{p(\cdot )\tau \left( \cdot \right) }{ r\sigma }}\lesssim 1, \nonumber \\ \end{aligned}$$
(30)

with \(\sigma >0\) such that \(\tau ^{+}<\sigma <\frac{\tau ^{-}\min \left( p^{-},q^{-}\right) }{r}\). By Hölder’s inequality,

$$\begin{aligned}&|{Q(x,2^{k-v+3})}|M_{{Q(x,2^{k-v+3})}}\left( 2^{-kn\left( r+1/t\left( \cdot \right) \right) \sigma }\left| g_{v,k,v_{P}}\right| ^{\sigma /\tau \left( \cdot \right) }\right) \\&\quad \lesssim \Big \Vert \frac{(g_{v,k,v_{P}})^{1/\tau (\cdot )}}{|{Q(x,2^{k-v+3})} |^{r}}\chi _{{Q(x,2^{k-v+3})}}\Big \Vert _{p(\cdot )\tau (\cdot )/r}^{\sigma } \\&\qquad \times \Big \Vert |{Q(x,2^{k-v+3})}|^{r}2^{-kn\left( r+1/t\left( \cdot \right) \right) }\chi _{{Q(x,2^{k-v+3})}}\Big \Vert _{t(\cdot )}^{\sigma }, \end{aligned}$$

where \(\frac{1}{\sigma }=\frac{r}{p(\cdot )\tau (\cdot )}+\frac{1}{t(\cdot )} \). The second quasi-norm is bounded. The first quasi-norm is bounded if and only if

$$\begin{aligned} \left\| \frac{\left( g_{v,k,v_{P}}\right) ^{1/r}}{|{Q(x,2^{k-v+3})} |^{\tau (\cdot )}}\chi _{{Q(x,2^{k-v+3})}}\right\| _{p(\cdot )}\lesssim 1, \end{aligned}$$

which follows since \(\left\| \lambda \right\| _{{\mathfrak {f}}_{p\left( \cdot \right) ,q\left( \cdot \right) }^{\alpha \left( \cdot \right) ,\tau (\cdot )}}\le 1\). Hence we can apply Theorem 1 to estimate

$$\begin{aligned} \left( M_{{Q(x,2^{k-v+3})}}(2^{-kn\left( r+1/t\left( \cdot \right) \right) \tau \left( \cdot \right) }g_{v,k,v_{P}})\right) ^{\sigma /\tau \left( x\right) } \end{aligned}$$

by

$$\begin{aligned} c\text { }M_{{Q(x,2^{k-v+3})}}\left( \left( 2^{-kn\left( r+1/t\left( \cdot \right) \right) \tau \left( \cdot \right) }g_{v,k,v_{P}}\right) ^{\sigma /\tau \left( \cdot \right) }\right) +\min \left( {2^{n(k-v)s}},1\right) h\left( x\right) , \end{aligned}$$

where \(s>0\) is large enough and h is the same function as in the proof of Lemma 3. Hence the term in (30), with \(\sum _{v=0}^{k+3}\) in place of \(\sum _{v=0}^{\infty }\) is bounded by

$$\begin{aligned} c\sum _{v=0}^{k+3}\frac{1}{2^{(w-n-\frac{n\sigma }{t^{+}})k}+2^{kns}}\Big \Vert \frac{M_{{Q(\cdot ,2^{k-v+3})}}\left( g_{v,k,v_{P}}\right) ^{\frac{\sigma }{ \tau \left( \cdot \right) }}}{|{Q(\cdot ,2^{k-v_{P}+3})}|^{r\sigma }}\Big \Vert _{ \frac{p(\cdot )\tau \left( \cdot \right) }{r\sigma }}+\frac{c\left( k+4\right) ^{s}}{2^{(w-n-\frac{n\sigma }{t^{+}})k}+2^{kns}}. \end{aligned}$$

Since \({\mathcal {M}}\) is bounded in \(L^{p(\cdot )\tau \left( \cdot \right) /r\sigma }\) the last norm is bounded by

$$\begin{aligned} \left\| {\mathcal {M}}\left( \frac{\left( g_{v,k,v_{P}}\right) ^{\frac{\sigma }{ \tau \left( \cdot \right) }}}{|{Q(\cdot ,2^{k-v_{P}+3})}|^{r\sigma }}\right) \right\| _{\frac{p(\cdot )\tau \left( \cdot \right) }{r\sigma }}\lesssim \Big \Vert \frac{\left( g_{v,k,v_{P}}\right) ^{\frac{\sigma }{\tau \left( \cdot \right) }}}{|{Q(\cdot ,2^{k-v_{P}+3})}|^{r\sigma }}\Big \Vert _{\frac{p(\cdot )\tau \left( \cdot \right) }{r\sigma }}. \end{aligned}$$

This term is bounded by constant if and only if

$$\begin{aligned} \left\| \frac{\left( g_{v,k,v_{P}}\right) ^{1/r}}{|{Q(c_{P},2^{k-v_{P}+3})} |^{\tau \left( \cdot \right) }}\right\| _{p(\cdot )}\lesssim 1, \end{aligned}$$

which follows since \(|{Q(\cdot ,2^{k-v_{P}+3})}|\ge 1\). Now, with \(w>n\), the term in (30), with \(\sum _{v=k+4}^{\infty }\) in place of \(\sum _{v=0}^{\infty }\) is bounded by

$$\begin{aligned}&\frac{c\text { }2^{(w-n-\frac{n\sigma }{t^{+}})k}}{2^{(w-n-\frac{n\sigma }{ t^{+}})k}+2^{kns}}\Big \Vert \Big (\sum _{v=k+4}^{\infty }\Big (\frac{\eta _{v,w}*\left( g_{v,k,v_{P}}\right) ^{\frac{\sigma }{\tau \left( \cdot \right) }}}{|{Q(\cdot ,2^{k-v_{P}+3})}|^{r\sigma }}\Big )^{\frac{q\left( \cdot \right) \tau \left( \cdot \right) }{r\sigma }}\Big )^{\frac{\sigma r}{ q\left( \cdot \right) \tau \left( \cdot \right) }}\Big \Vert _{\frac{p(\cdot )\tau \left( \cdot \right) }{r\sigma }} \\&\qquad +\frac{c\text { }2^{kns}}{2^{(w-n-\frac{n\sigma }{t^{+}})k}+2^{kns}} \\&\quad \lesssim 1, \end{aligned}$$

by Theorem 2. Therefore our estimate (29) follows by taking \(0<s<\frac{w-n}{n}\) and the fact that

$$\begin{aligned} d>n\left( r+\frac{1}{t^{-}}\right) \tau ^{+}+a+w. \end{aligned}$$

Case 2.\(|P|<1\). We have

$$\begin{aligned} \left| P\right| ^{-\tau (x)}\le c\left| P\right| ^{-\tau (y)}(1+2^{v_{P}}\left| x-y\right| )^{c_{\log }\left( \tau \right) }\le c\left| P\right| ^{-\tau (y)}(1+2^{v}\left| x-y\right| )^{c_{\log }\left( \tau \right) } \end{aligned}$$

for any \(x,y\in {\mathbb {R}}^{n}\). Hence,

$$\begin{aligned} \frac{\eta _{v,w}*g_{v,k,v_{P}}}{|P|^{\tau (\cdot )r}}\lesssim \eta _{v,w-c_{\log }\left( \tau \right) }*\big (\frac{g_{v,k,v_{P}}}{|P|^{\tau (\cdot )r}}\big ),\quad k\in {\mathbb {N}}_{0}. \end{aligned}$$

Our estimate follows by Theorem 2. The proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drihem, D. Variable Triebel–Lizorkin-Type Spaces. Bull. Malays. Math. Sci. Soc. 43, 1817–1856 (2020). https://doi.org/10.1007/s40840-019-00776-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-019-00776-y

Keywords

Mathematics Subject Classification

Navigation