Skip to main content
Log in

Optimum Addition of Information to Computer Experiments in View of Uniformity and Orthogonality

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Computer experiments have become ubiquitous across the engineering, physical and chemical sciences. Computer experiments are constructed to emulate the behavior of a physical system. Assume that we perform an experiment using a two-level uniform design. If, after obtaining data, we decide additional runs of the computer simulator are needed, how to add more runs after collecting our data? How to design the experiment to efficiently extract useful information from it? In this paper, we try to answer these questions by providing a new approach for constructing efficient uniform designs by adding new runs to an existing uniform design. The optimization criteria are the uniformity criteria measured by Lee, symmetric, wrap-around, centered and mixture discrepancy and the orthogonality criteria measured by the B-criterion and the O-criterion. We investigate the relationship between orthogonality and uniformity criteria in view of analytical expressions and lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Durrieu, G., Briollais, L.: Sequential design for microarray experiments. J. Am. Stat. Assoc. 104, 650–660 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dey, A., Mukerjee, R.: Fractional Factorial Plans. Wiley, NewYork (1999)

    Book  MATH  Google Scholar 

  3. Elsawah, A.M., Qin, H.: New lower bound for centered \(L_2\)-discrepancy of four-level \(U\)-type designs. Stat. Probab. Lett. 93, 65–71 (2014)

    Article  MATH  Google Scholar 

  4. Elsawah, A.M., Qin, H.: Lower bound of centered \(L_2\)-discrepancy for mixed two and three levels \(U\)-type designs. J. Stat. Plann. Inference 161, 1–11 (2015a)

    Article  MATH  Google Scholar 

  5. Elsawah, A.M., Qin, H.: Mixture discrepancy on symmetric balanced designs. Stat. Probab. Lett. 104, 123–132 (2015b)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elsawah, A.M., Qin, H.: A new strategy for optimal foldover two-level designs. Stat. Probab. Lett. 103, 116–126 (2015c)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elsawah, A.M., Qin, H.: Lee discrepancy on symmetric three-level combined designs. Stat. Probab. Lett. 96, 273–280 (2015d)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elsawah, A.M., Qin, H.: An efficient methodology for constructing optimal foldover designs in terms of mixture discrepancy. J. Korean Stat. Soc. 45, 77–88 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elsawah, A.M., Qin, H.: Asymmetric uniform designs based on mixture discrepancy. J. Appl. Stat. 43(12), 2280–2294 (2016b)

    Article  MathSciNet  Google Scholar 

  10. Elsawah, A.M., Qin, H.: An effective approach for the optimum addition of runs to three-level uniform designs. J. Korean Stat. Soc. 45(4), 610–622 (2016c)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fang, K.T.: The uniform design: application of number-theoretic methods in experimental design. Acta Math. Appl. Sin. 3, 363–372 (1980)

    Google Scholar 

  12. Fang, K.T., Hickernell, F.J.: The uniform design and its applications, Bulletin of the International Statistical Institute, 50th Session, Book 1, pp. 333–349. International Statistical Institute, Beijing (1995)

  13. Fang, K.T., Ma, C.X., Mukerjee, R.: Uniformity in fractional factorials. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Springer, Berlin (2002)

    Google Scholar 

  14. Fang, K.T., Maringer, D., Tang, Y., Winker, P.: Lower Bounds and stochastic optimization algorithms for uniform designs with three or four levels. Math. Comput. 75, 859–878 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fang, K.T., Mukerjee, R.: A connection between uniformity and aberration in regular fractions of two-level factorials. Biometrika 87, 93–198 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang, K.T., Lu, X., Winker, P.: Lower bounds for centered and wrap-around \(L_2\)-discrepancies and construction of uniform designs by threshold accepting. J. Complex. 19, 692–711 (2003)

    Article  MATH  Google Scholar 

  17. Hedayat, A.S., Sloane, N.J., Stufken, J.: Orthogonal Arrays: Theory and Application. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  18. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. 67, 299–322 (1998a)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hickernell, F.J.: Lattice rules: how well do they measure up? In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol. 138, pp. 109–166. Springer, New York (1998b)

    Chapter  Google Scholar 

  20. Hickernell, F.J.: Goodness-of-fit statistics, discrepancies and robust designs. Stat. Probab. Lett. 44, 73–78 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ji, Y.B., Alaerts, G., Xu, C.J., Hu, Y.Z., Heyden, Y.V.: Sequential uniform designs for fingerprints development of Ginkgo biloba extracts by capillary electrophoresis. J. Chromatogr. A 1128, 273–281 (2006)

    Article  Google Scholar 

  22. Loeppky, J.L., Moore, L.M., Williams, B.J.: Batch sequential designs for computer experiments. J. Stat. Plann. Inference 140, 1452–1464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qin, H., Li, D.: Connection between uniformity and orthogonality for symmetrical factorial designs. J. Stat. Plann. Inference 136, 2770–2782 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qin, H., Zhang, S.L., Fang, K.T.: Constructing uniform design with two- or three-level. Acta Math. Sci. Ser. B 26, 451–459 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tong, C.: Refinement strategies for stratified sampling methods. Reliab. Eng. Syst. Saf. 91, 1257–1265 (2006)

    Article  Google Scholar 

  26. Wang, Y., Fang, K.T.: A note on uniform distribution and experimental design. Chin. Sci. Bull. 26, 485–489 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Xie, M.Y., Fang, K.T.: Admissibility and minimaxity of the uniform design in nonparametric regression model. J. Stat. Plann. Inference 83, 101–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yue, R.X., Hickernell, F.J.: Robust optimal designs for fitting approximately liner model. Stat. Sin. 9, 1053–1069 (1999)

    MATH  Google Scholar 

  29. Zhang, A.J., Fang, K.T., Li, R., Sudjianto, A.: Majorization framework balanced lattice designs. Ann. Stat. 33, 2837–2853 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, Y.D., Ning, J.H., Song, X.B.: Lee discrepancy and its applications in experimental designs. Stat. Probab. Lett. 78, 1933–1942 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, Y.D., Fang, K.F., Ning, J.H.: Mixture discrepancy for quasi-random point sets. J. Complex. 29, 283–301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate helpful suggestions of the referees and the Editor in Chief Prof. Rosihan M. Ali that significantly improved the paper. This work was partially supported by the UIC Grants (Nos. R201409 and R201712), the Zhuhai Premier Discipline Grant and the National Natural Science Foundation of China (Nos. 11271147, 11471135, 11471136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Elsawah.

Additional information

Communicated by See Keong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsawah, A.M., Fang, KT., He, P. et al. Optimum Addition of Information to Computer Experiments in View of Uniformity and Orthogonality. Bull. Malays. Math. Sci. Soc. 42, 803–826 (2019). https://doi.org/10.1007/s40840-017-0513-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0513-9

Keywords

Mathematics Subject Classification

Navigation