Skip to main content
Log in

The Cauchy Problem on a Generalized Novikov Equation

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We give asymptotic description of strong solutions in its lifespan with compactly supported initial momentum and investigate the persistence property in weighted space and blow-up phenomena for a generalized Novikov equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4), 585–620 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brandolese, L.: Breakdown for the Camassa–Holm equation using decay criteria and persistence in weighted spaces. Int. Math. Res. Not. 22, 5161–5181 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Constantin, A., Lannes, D.: The hydro-dynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 193, 165–186 (2009)

    Article  MATH  Google Scholar 

  5. Degasperis, A., Procesi, M.: In: Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, SPT 98, Rome, 16–22, December 1998, p. 23. World Scientific, River Edge (1999)

  6. Grayshan, K.: Peakon solutions of the Novikov equation and the properties of the date-to-solution map. J. Math. Anal. Appl. 397, 515–521 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gröchenig, K.: Weight functions in time-frequency analysis. In: Pseudo-differential Operators: Partial Differential Equations and Time–Frequency Analysis. Fields Institute Communications, vol. 52, pp. 343–366. American Mathematical Society, Providence, RI (2007)

  8. Guo, Z.: On an integrable Camassa–Holm type equation with cubic nonlinearity. Nonlinear Anal. Real World Appl. 34, 225–232 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, Z., Zhou, Y.: On solutions to a two-component generalized Camassa–Holm system. Stud. Appl. Math. 124, 307–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, Z.: Blow-up and global solutions to a new integrable model with two components. J. Math. Anal. Appl. 372, 316–327 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, Z., Zhu, M.: Wave breaking for a modified two-component Camassa–Holm system. J. Differ Equ. 252, 2759–2770 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, Z., Zhu, M.: Wave breaking and measure of momentum support for an integrable Camassa–Holm system with two components. Stud. Appl. Math. 130, 417–430 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Himonas, A., Misiolek, G., Ponce, G., Zhou, Y.: Persistence properties and unique continuation of solutions of Camassa–Holm equation. Commun. Math. Phys. 271, 511–522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hone, A.N.W., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa–Holm equation. Dyn. Partial Diff. Equ. 6, 253–289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hone, A.N.W., Wang, J.P.: Integrable peakon equations with cubic nonlinearity. J. Phys. A 41, 372002 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang, Z., Ni, L.: Blow-up phenomena for the integrable Novikov equation. J. Math. Anal. Appl. 385, 551–558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, Z., Ni, L., Zhou, Y.: Wave breaking for the Camassa–Holm equation. J. Nonlinear Sci. 22, 235–245 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, T.: Quasi-linear equations of evolution with applications to partial differential equations. In: Spectral Theory and Differential Equations. Lecture Notes in Mathematics, vol. 448, pp. 25–70. Springer, Berlin (1975)

  20. Lai, S.: Global weak solutions to the Novikov equation. J. Funct. Anal. 265, 520–544 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lai, S., Wu, M.: The local strong and weak solutions to a generalized Novikov equation. J. Math. Anal. Appl. 385, 551–558 (2012)

    Article  MathSciNet  Google Scholar 

  22. Lai, S., Li, N., Wu, Y.: The existence of global strong and weak solutions for the Novikov equation. J. Math. Anal. Appl. 399, 682–691 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mi, Y., Mu, C.: On the Cauchy problem for the modified Novikov equation with peakon solutions. J. Differ. Equ. 254, 961–982 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Novikov, V.S.: Generalizations of the Camassa–Holm equation. J. Phys. A 42, 342002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ni, L., Zhou, Y.: Well-posedeness and persistence properties for the Novikov equation. J. Differ. Equ. 250, 3002–3021 (2011)

    Article  MATH  Google Scholar 

  26. Ni, L., Zhou, Y.: A new asymptotic behavior for solutions of the Camassa–Holm equation. Proc. Am. Math. Soc. 140, 607–614 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tiglay, F.: The periodic Cauchy problem for Novikov’s equation. Int. Math. Res. Not. 20, 4633–4648 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Wu, X., Yin, Z.: Global weak solutions for the Novikov equation. J. Phys. A 44, 055202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yan, W., Li, Y., Zhang, Y.: The Cauchy problem for the integrable Novikov equation. J. Differ. Equ. 253, 298–318 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yan, W., Li, Y., Zhang, Y.: The Cauchy problem for the Novikov equation. Nonlinear Differ. Equ. Appl. 20, 1157–1169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, Y.: On solutions to the Holm-Staley b-family of equations. Nonlinearity 23(2), 369–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, S., Chen, R.: A few remarks on the generalized Novikov equation. J. Inequalities Appl. 2013, 560 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their careful reading and helpful comments. This work was partially supported by the National Natural Science Foundation of China, under Grant No. 11301394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Guo.

Additional information

Communicated by Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Shan, M., Xu, C. et al. The Cauchy Problem on a Generalized Novikov Equation. Bull. Malays. Math. Sci. Soc. 41, 1859–1877 (2018). https://doi.org/10.1007/s40840-016-0431-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-016-0431-2

Keywords

Mathematics Subject Classification

Navigation