Skip to main content
Log in

On Circle Preserving Quadratic Operators

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In the present paper, we study linear operators \(\Delta \) from the algebra of \(2\times 2\) matrices \({\mathbb {M}}_2({\mathbb {C}})\) into its tensor square. Each such kind of mapping defines a quadratic operator on the state space of \({\mathbb {M}}_2({\mathbb {C}})\). We know that q-purity of quasi quantum quadratic operators (q.q.o.) is equivalent to the invariance of the unite sphere under the corresponding quadratic operator. Therefore, in the paper, we consider quadratic operators, which preserve the unit circle, and show that the corresponding quasi q.q.o. cannot be not positive. Note that this is a much weaker condition than the q-purity of quasi q.q.o. Moreover, we will classify q-pure circle preserving quadratic operators into three disjoint classes (non isomorphic). Moreover, we are able to show that quasi q.q.o. corresponding to the first class is block positive. Note that the block positivity is weaker than positivity. This kind of operator, i.e., not positive but block-positive operator allows us to detect that the given state on \({\mathbb {M}}_2({\mathbb {C}})\otimes {\mathbb {M}}_2({\mathbb {C}})\) is either entangled or not. The obtained results will allow us to verify whether a given mapping is positive or not. This finding suggests us to produce a class of non-positive mappings. Moreover, it will shed some light in finding entanglement states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is known that quadratic dynamic systems have been proven to be a rich source of analysis for the investigation of dynamic properties and modeling in different domains of science. However, such kinds of operators do not cover the case of quantum systems. In [7, 14], quadratic operators are defined by q.q.o, which are quantum generalization of the well-known quadratic systems [12]. More concrete examples of q.q.o have been investigated in [15, 18].

References

  1. Accardi, L., Chruscinski, D., Kossakowski, A., Matsuoka, T., Ohya, M.: On classical and quantum liftings. Open Syst. Inf. Dyn. 17, 361–387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  3. Chruscinski, D.: Quantum-correlation breaking channels, quantum conditional probability and Perron–Frobenius theory. Phys. Lett. A 377, 606–611 (2013)

    Article  MathSciNet  Google Scholar 

  4. Chruscinski, D.: A class of symmetric Bell diagonal entanglement witnesses - a geometric perspective. J. Phys. A 47, 424033 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chruscinski, D., Kossakowski, A.: Geometry of quantum states: new construction of positive maps. Phys. Lett. A 373, 2301–2305 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chruscinski, D., Sarbicki, G.: Exposed positive maps in \(M_4(C)\). Open Syst. Inf. Dyn. 19, 1250017 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ganikhodzhaev, N.N., Mukhamedov, F.M.: Ergodic properties of quantum quadratic stochastic processes. Izv. Math. 65, 873–890 (2000)

    Article  MATH  Google Scholar 

  8. Ganikhodzhaev, R., Mukhamedov, F., Rozikov, U.: Quadratic stochastic operators and processes: results and open problems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14, 279–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ha, K.-C.: Entangled states with strong positive partial transpose. Phys. Rev. A 81, 064101 (2010)

    Article  Google Scholar 

  10. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lyubich, Y.I.: Mathematical Structures in Population Genetics. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  13. Majewski, W.A., Marciniak, M.: On a characterization of positive maps. J. Phys. A 34, 5863–5874 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mukhamedov, F.M.: On decomposition of quantum quadratic stochastic processes into layer-Markov processes defined on von Neumann algebras. Izv. Math. 68, 1009–1024 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mukhamedov, F., Abduganiev, A.: On Kadison-Schwarz type quantum quadratic operators on \(M_2(C)\). Abstr. Appl. Anal. 2013 (2013). Article ID 278606

  16. Mukhamedov, F., Abduganiev, A.: On pure quasi-quantum quadratic operators of \(M_2(\mathbb{{C}})\). Open Syst. Inf. Dyn. 20, 1350018 (2013)

    Article  MATH  Google Scholar 

  17. Mukhamedov, F., Ganikhodjaev, N.: Quantum Quadratic Operators and Processes. Lecture Notes in Mathematics, vol. 2133. Springer, New York (2015)

  18. Mukhamedov, F., Akin, H., Temir, S., Abduganiev, A.: On quantum quadratic operators on \(M_2({\mathbb{C}})\) and their dynamics. J. Math. Anal. Appl. 376, 641–655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Ruskai, M.B., Szarek, S., Werner, E.: An analysis of completely positive trace-preserving maps on \(M_2\). Linear Algebra Appl. 347, 159–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stormer, E.: Positive Linear Maps of Operator Algebras. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledges the MOE Grant FRGS14-135-0376 and the Junior Associate scheme of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. Finally, the author also would like to thank to an anonymous referee whose useful suggestions and comments improved the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Mukhamedov.

Additional information

Communicated by Mohammad Sal Moslehian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedov, F. On Circle Preserving Quadratic Operators. Bull. Malays. Math. Sci. Soc. 40, 765–782 (2017). https://doi.org/10.1007/s40840-015-0240-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-015-0240-z

Keywords

Mathematics Subject Classification

Navigation