Skip to main content
Log in

Non-ferrous Fenton’s Oxidation of Ametryn Using Bioleached E-waste Copper as a Catalyst

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Shake flask study on bioleaching of copper from e-waste using novel isolated bacterial strain Acidithiobacillus ferrooxidans BMSNITK17 was conducted and reported. Under suitable conditions, about 77% of copper was recovered. The process was optimized with several influencing parameters like pulp density, pH, inoculum, temperature, and shake flask speed. To find the vital variables that affect copper dissolution, correlation studies and principal component analysis (PCA) were performed. Investigation on the application of recovered copper as a catalyst in Fenton’s oxidation of ametryn proved the catalytic role of copper with 87% of ametryn degradation efficiency. This study confirms the usage potential of acidophilic bacterial strain toward recovery of valuable metals from e-waste and its application as a catalyst in advanced oxidation process for the degradation of organic pollutants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gaidajis G, Angelakoglou K, Aktsoglou D (2010) E-waste: environmental problems and current management engineering science and technology review. J Eng Sci Technol Rev 3(1). www.jestr.org

  2. Garlapati VK (2016) E-waste in India and developed countries: management, recycling, business and biotechnological initiatives. Renew Sustain Energy Rev 54:874–881. https://doi.org/10.1016/j.rser.2015.10.106

    Article  CAS  Google Scholar 

  3. Acevedo F, Gentina JC (1989) Process engineering aspects of the bioleaching of copper ores. Bioprocess Eng 4:223–229

    Article  CAS  Google Scholar 

  4. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  5. Donati E, Curutchet G, Pogliani C, Tedesco E (1996) Bioleaching of covellite using pure and mixed cultures of Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process Biochem 31(2):129–134

    Article  CAS  Google Scholar 

  6. Falco L, Pogliani C, Curutchet G, Donati E (2003) A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 71(1–2):31–36. https://doi.org/10.1016/S0304-386X(03)00170-1

    Article  CAS  Google Scholar 

  7. Jain N, Sharma DK (2004) Biohydrometallurgy for nonsulfidic minerals—a review. Geomicrobiol J 21(3):135–144. https://doi.org/10.1080/01490450490275271

    Article  CAS  Google Scholar 

  8. Konishi Y, Yoshida S, Asai S (1995) Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol Bioeng 48:592–600

    Article  CAS  Google Scholar 

  9. Nestor D, Valdivia U, Chaves AP (2001) Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans. Int J Miner Process 62(1–4):187–198

    Article  CAS  Google Scholar 

  10. Grant WF (1979) The genotoxicity effect of 2, 4, 5-T. Mutat Res 65:83–119

    Article  CAS  Google Scholar 

  11. Gupta PK (2017) Herbicides and fungicides. In: Reproductive and developmental toxicology. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804239-7.00037-8

  12. Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9:90–100. https://doi.org/10.1515/intox-2016-0012

    Article  CAS  Google Scholar 

  13. Lebaron HM, McFarland JE, Burnside OC (1952) The triazine herbicides: a milestone in the development of weed control technology. In: The triazine herbicides. Elsevier, Amsterdam, pp 1–12

  14. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83(6):769–776. https://doi.org/10.1002/jctb.1873

    Article  CAS  Google Scholar 

  15. Huang S, Zhou L (2012) Fe2+ oxidation rate drastically affect the formation and phase of secondary iron hydroxysulfate mineral occurred in acid mine drainage. Mater Sci Eng C 32(4):916–921. https://doi.org/10.1016/j.msec.2012.02.012

    Article  CAS  Google Scholar 

  16. Brillas E, Miguel A, Garrido A (2003) Mineralization of herbicide 3, 6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and. Electrochem Acta 48:1697–1705. https://doi.org/10.1016/S0013-4686(03)00142-7

    Article  CAS  Google Scholar 

  17. Chamarro E, Marco A, Esplugas SM (2001) Use of Fenton’s reagent to improve organic chemical biodegradability. Water Res 35(4):1047–1051

    Article  CAS  Google Scholar 

  18. Lodha B, Chaudhari S (2007) Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. J Hazard Mater 148(1–2):459–466. https://doi.org/10.1016/j.jhazmat.2007.02.061

    Article  CAS  Google Scholar 

  19. Tantak NP, Chaudhari S (2006) Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. J Hazard Mater 136:698–705. https://doi.org/10.1016/j.jhazmat.2005.12.049

    Article  CAS  Google Scholar 

  20. Bhaskar S, Manu B, Sreenivasa MY (2019) Bacteriological synthesis of iron hydroxysulfate using an isolated Acidithiobacillus ferrooxidans strain and its application in ametryn degradation by Fenton’s oxidation process. J Environ Manag. https://doi.org/10.1016/j.jenvman.2018.11.048

    Article  Google Scholar 

  21. Bhaskar S, Manu B, Sreenivasa MY (2021) Bioleaching of iron from laterite soil using an isolated Acidithiobacillus ferrooxidans strain and application of leached laterite iron as Fenton’s catalyst in selective herbicide degradation. PLoS ONE. https://doi.org/10.1371/journal.pone.0243444

    Article  Google Scholar 

  22. Manu B, Sreenivasa MY (2020) Bioleaching of iron from fly ash using a novel isolated Acidithiobacillus ferrooxidans strain and evaluation of catalytic role of leached iron in the Fenton’s oxidation of Cephelaxin—CHEMBIOEN-2020 Special Issue. J Indian Chem Soc 97:360–367

    Google Scholar 

  23. Karale R, Basavaraju Manu SS (2013). Catalytic use of laterite iron for degradation of 2-aminopyridine using advanced oxidation processes. In: Proceedings of the International Conference on Innovations in Civil Engineering ICICE-2013 Kochi, India

  24. Sangami S, Manu B (2017) Synthesis of green iron nanoparticles using laterite and their application as a Fenton. Environ Technol Innov. https://doi.org/10.1016/j.eti.2017.06.003

    Article  Google Scholar 

  25. Sangami S, Manu B (2018) Catalytic efficiency of laterite based FeNPs for the mineralization of mixture of herbicides in water. Environ Technol. https://doi.org/10.1080/09593330.2018.1449899

    Article  Google Scholar 

  26. Wu Z, Zou L, Chen J, Lai X, Zhu Y (2016) Column bioleaching characteristic of copper and iron from Zijinshan sulfide ores by acid mine drainage. Int J Miner Process 149:18–24. https://doi.org/10.1016/j.minpro.2016.01.015

    Article  CAS  Google Scholar 

  27. Sangami S, Manu B (2016) Fenton’s treatment of actual agriculture runoff water. Water Sci Technol. https://doi.org/10.2166/wst.2016.538

    Article  Google Scholar 

  28. Pham AN, Xing G, Miller CJ, Waite TD (2013) Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal 301:54–64. https://doi.org/10.1016/j.jcat.2013.01.025

    Article  CAS  Google Scholar 

  29. American Association of Health (1992) APHA Method 4500-F: standard methods for the examination of water and wastewater, 18th edition. American Association of Health, p 552

  30. Eisenberg GM (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem 15(5):327–328

    CAS  Google Scholar 

  31. Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7(April 2000):91–98

    Article  Google Scholar 

  32. Fowler TA, Holmes PR, Crundwell FK (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65(7):2987–2993. https://doi.org/10.1016/S0304-386X(00)00172-9

    Article  CAS  Google Scholar 

  33. Mousavi SM, Yaghmaei S, Vossoughi M, Jafari A, Hoseini SA (2005) Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor. Hydrometallurgy 80(1–2):139–144. https://doi.org/10.1016/j.hydromet.2005.08.001

    Article  CAS  Google Scholar 

  34. Witne JYI, Phillips CV (2001) Bioleaching of OK Tedi copper concentrate in oxygen and carbon dioxide enriched air. Miner Eng 6875(1):25–48. https://doi.org/10.1016/S0892-6875(00)00158-8

    Article  Google Scholar 

  35. Karimi GR, Rowson NA, Hewitt CJ (2009) Bioleaching of copper via iron oxidation from chalcopyrite at elevated temperatures. Food Bioprod Process 88(1):21–25. https://doi.org/10.1016/j.fbp.2009.06.005

    Article  CAS  Google Scholar 

  36. DewC DW, van Buuren K, McEwan CB (1999) Bioleaching of base metal sulphide concentrates: a comparison of mesophile and thermophile bacterial cultures. Process Metall 9:229–238

    Article  Google Scholar 

  37. Qin W, Yang C, Lai S, Wang J, Liu K, Zhang B (2013) Bioleaching of chalcopyrite by moderately thermophilic microorganisms. Bioresour Technol 129:200–208. https://doi.org/10.1016/j.biortech.2012.11.050

    Article  CAS  Google Scholar 

  38. Stott MB, Watling HR (2000) The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Miner Eng 13(508):1566

    Google Scholar 

  39. Bartholomew DJ (2010) Principal components analysis. In: International encyclopedia of education. pp 374–377. https://doi.org/10.1016/B978-0-08-044894-7.01358-0

  40. Liang YC, Lee HP, Lim SP, Lin WZ, Lee KH, Wu CG (2002) Proper orthogonal decomposition and its applications—Part I: Theory. J Sound Vib 252(3):527–544. https://doi.org/10.1006/jsvi.2001.4041

    Article  Google Scholar 

  41. Manoj A, Narayan KSB (2021) The utility of proper orthogonal decomposition for dimensionality reduction in understanding behavior of concrete. Comput Concr 28(2):129–136. https://doi.org/10.12989/cac.2021.28.2.129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bhaskar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest associated with this publication.

Additional information

The contributing editor for this article was Grace Ofori-Sarpong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskar, S., Manoj, A., Manu, B. et al. Non-ferrous Fenton’s Oxidation of Ametryn Using Bioleached E-waste Copper as a Catalyst. J. Sustain. Metall. 8, 1617–1627 (2022). https://doi.org/10.1007/s40831-022-00589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00589-7

Keywords

Navigation