Skip to main content

Advertisement

Log in

Sustainable Applications for Disposal of Recycled Aluminum: A Systematic Literature Review Using the SciMAT Software

  • Review Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

This review aims to carry out a scientific review of the current status of aluminum can recycling processes over the last 15 years, seeking to find sustainable applications for its destination. Thus, the research topics were defined by the identification of the structure of the scientific field of research and the relationship of aluminum recycling, casting processes, and formation of aluminum-based alloys, as well as their applications. Therefore, three topics were studied: the state of the art of aluminum recycling practices; processes being performed and aluminum casting techniques and methods; and the current state of formation of secondary aluminum-based alloys, the alloy elements being used, and their applications after the formation of alloys. Based on the above three topics, the research topics include (A) aluminum recycling, (B) casting processes, and (C) the formation of aluminum-based alloys and their applications. For bibliometric analysis, the software SciMAT was applied. Through the overlaid map and the evolution map, it was possible to detect the temporal evolution of the scientific field in the researched area. Cluster analysis allowed us to identify the motor words. Through the connections network, keywords connected to the motor themes were verified that indicated the connection areas of the research field and the main authors. The simulation models were factors of innovation in the area, as well as the software packages ANSYS and ProCAST. In the area of alloy formation, the liquid metal cleaning analyzer technique was highlighted in the production of high-quality alloys. The important connections to aluminum recycling feasibility are presented in this review.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CA:

Cellular automaton

CAP:

Casting adjusted pressure

CDC:

Casting and coupling stirring direct chill

CMP:

Chemical polishing model

DC:

Direct chill

ICME:

Integrated computational materials engineering

LiCMA:

Liquid cleaning metal analyzer

NDC:

Normal direct chill

SLR:

Systematic literature review

SciMAT:

Science mapping analysis tool

VAC:

Virtual aluminum casting

References

  1. Maung KN, Yoshida T, Liu G, Lwin CM, Muller DB, Hashimoto S (2017) Assessment of secondary aluminum reserves of nations. Resour Conserv Recycl 126:34–41. https://doi.org/10.1016/j.resconrec.2017.06.016

    Article  Google Scholar 

  2. Mahinroosta M, Allahverdi A (2018) Hazardous aluminum dross characterization and recycling strategies: a critical review. J Environ Manage 223:452–468. https://doi.org/10.1016/j.jenvman.2018.06.068

    Article  CAS  Google Scholar 

  3. Tsakiridis PE (2012) Aluminium salt slag characterization and utilization: a review. J Hazard Mater 217–218:1–10. https://doi.org/10.1016/j.jhazmat.2012.03.052

    Article  CAS  Google Scholar 

  4. Wan B, Chen W, Lu T, Liu F, Jiang Z, Mao M (2017) Review of solid state recycling of aluminum chips. Resour Conserv Recycl 125:37–47. https://doi.org/10.1016/j.resconrec.2017.06.004

    Article  Google Scholar 

  5. Holzschuh GG, Dörr DS, Moraes JAR, Garcia SB (2020) Metal matrix production: casting of recycled aluminum cans and incorporation of rice husk ash and magnesium. J Compos Mater

  6. Capuzzi S, Timelli G (2018) Preparation and melting of scrap in aluminum recycling: a review. Metals 8(4):24. https://doi.org/10.3390/met8040249

    Article  CAS  Google Scholar 

  7. Zupic I, Čater T (2015) Bibliometric methods in management and organization. Organ Res Methods 18(3):429–472

    Article  Google Scholar 

  8. Cobo MJ, Jürgens B, Herrero-Solana V, Martínez MA, Herrera-Viedma E (2018) Industry 4.0: a perspective based on bibliometric analysis. Proc Comput Sci 139:364–371. https://doi.org/10.1016/j.procs.2018.10.278

    Article  Google Scholar 

  9. Kipper L, Bertolin Furstenau L, Hoppe D, Frozza R, Iespen S (2019) Scopus scientific mapping production in industry 40 (2011–2018): a bibliometric analysis. Int J Prod Res 10:1–24. https://doi.org/10.1080/00207543.2019.1671625

    Article  Google Scholar 

  10. Hermansson F, Janssen M, Svanstrom M (2019) Prospective study of lignin-based and recycled carbon fibers in composites through meta-analysis of life cycle assessments. J Clean Prod 223:946–956. https://doi.org/10.1016/j.jclepro.2019.03.022

    Article  CAS  Google Scholar 

  11. Thomé AMT, Scavarda LF, Scavarda AJ (2016) Conducting systematic literature review in operations management. Prod Plan Control 27(5):408–420. https://doi.org/10.1080/09537287.2015.1129464

    Article  Google Scholar 

  12. Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering (Version 2.3)-EBSE Technical Report. Keele University and University of Durham. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.471

  13. Neto ACD, Subramanyan R, Vieira M, Travassos GH (2007) A survey on model-based testing approaches: a systematic review. In: Proceedings of the 1st ACM international workshop on Empirical assessment of software engineering languages and technologies: held in conjunction with the 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE) 2007. ACM, Atlanta, pp 31–36. https://doi.org/10.1145/1353673.1353681

  14. Cobo M, López-Herrera AG, Herrera-Viedma E, Herrera F (2012) SciMAT: a new science mapping analysis software tool. J Am Soc Inform Sci Technol 63:1609–1630. https://doi.org/10.1002/asi.22688

    Article  Google Scholar 

  15. Donato H, Donato M (2019) Stages for undertaking a systematic review. Acta Med Port. 32(3):227–235. https://doi.org/10.20344/amp.11923

    Article  Google Scholar 

  16. Dyba T, Dingsoyr T, Hanssen GK (2007). Applying systematic reviews to diverse study types: an experience report. In: First international symposium on empirical software engineering and measurement (ESEM 2007). IEEE, pp 225–234. https://doi.org/10.1109/ESEM.2007.59

  17. Kitchenham B, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S (2009) Systematic literature reviews in software engineering: a systematic literature review. Inf Softw Technol 51(1):7–15. https://doi.org/10.1016/j.infsof.2008.09.009

    Article  Google Scholar 

  18. Sampaio R, Mancini M (2007) Systematic review studies: a guide for careful synthesis of the scientific evidence. Braz J Phys Ther 11:83–89. https://doi.org/10.1590/S1413-35552007000100013

    Article  Google Scholar 

  19. Callon M, Courtial JP, Laville F (1991) Co-word analysis as a tool for describing the network of interactions between basic and technological research: the case of polymer chemistry. Scientometrics 22(1):155–205. https://doi.org/10.1007/bf02019280

    Article  Google Scholar 

  20. Cobo MJ, Chiclana F, Collop A, de Ona J, Herrera-Viedma E (2013) A bibliometric analysis of the intelligent transportation systems research based on science mapping. IEEE Trans Intell Transp Syst 15(2):901–908. https://doi.org/10.1109/TITS.2013.2284756

    Article  Google Scholar 

  21. Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F (2011) Science mapping software tools: review, analysis, and cooperative study among tools. J Am Soc Inform Sci Technol 62(7):1382–1402. https://doi.org/10.1002/asi.21525

    Article  Google Scholar 

  22. He Q (1999) Knowledge discovery through co-word analysis. Library Trends - University of Illinois, vol 48, pp 133–159. ISSN: 0024-2594. http://hdl.handle.net/2142/8267

  23. Carrera E, González A, Vázquez JL, Colás R, Valtierra S (2012) Influence of quenching rate on residual stresses in aluminum casting engine blocks. In: 70th World Foundry Congress 2012, WFC 2012, pp 314–317. ISBN: 978-162276382-5. http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84872543611&origin=inward

  24. Carrera E, Rodríguez A, Talamantes-Silva J, Gloria D, Valtierra S, Colás R (2012) Study of residual stresses in complex aluminium castings. Int J Cast Metals Res 25(5):264–269. https://doi.org/10.1179/1743133612Y.0000000028

    Article  CAS  Google Scholar 

  25. González R, González A, Talamantes-Silva J, Valtierra S, Mercado-Solís RD, Garza-Montes-De-Oca NF, Colás R (2013) Fatigue of an aluminium cast alloy used in the manufacture of automotive engine blocks. Int J Fatigue 54:118–126. https://doi.org/10.1016/j.ijfatigue.2013.03.018

    Article  CAS  Google Scholar 

  26. González R, Martínez DI, González JA, Talamantes J, Valtierra S, Colás R (2011) Experimental investigation for fatigue strength of a cast aluminium alloy. Int J Fatigue 33(2):273–278. https://doi.org/10.1016/j.ijfatigue.2010.09.002

    Article  CAS  Google Scholar 

  27. Han Q, Viswanathan S, More KL, Myers MR, Warwick MJ, Chen YC (2008) Bonding of steel inserts during aluminum casting, TMS 2008 Annual Meeting Supplemental: Materials Processing and Properties. New Orleans, vol. 3, pp 339–344. ISBN: 978–087339718–6. http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=51649102524&origin=inward

  28. Wang Q, Jones P, Wang Y, Gerard D (2017) Latest advances in aluminum shape casting. SAE Technical. https://doi.org/10.4271/2017-01-1665

    Article  Google Scholar 

  29. Allison J, Li M, Wolverton C, Su X (2006) Virtual aluminum castings: an industrial application of ICME. JOM 58(11):28–35. https://doi.org/10.1007/s11837-006-0224-4

    Article  CAS  Google Scholar 

  30. Gu C, Lu Y, Cinkilic E, Miao J, Klarner A, Yan X, Luo AA (2019) Predicting grain structure in high pressure die casting of aluminum alloys: a coupled cellular automaton and process model. Comput Mater Sci 161:64–75. https://doi.org/10.1016/j.commatsci.2019.01.029

    Article  CAS  Google Scholar 

  31. Liu X, Li K (2011) Simulation of the dendritic growth of aluminum casting during solidification based on CA method. In: 2010 international conference on advances in materials and manufacturing processes, ICAMMP 2010. Shenzhen, pp 376–380. https://doi.org/10.4028/www.scientific.net/AMR.154-155.376

  32. Long ZD, Han Q, Viswanathan S, Ningileri S, Das SK, Kuwanan K, Hassan MI, Khraishen M, Sabau A, Saito K (2005) Integrated 3D model to simulate solidification and predicate hot cracking during DC casting of aluminum alloys, pp 1057–1062 in Light Metals 2005 (Warrendale, Penn.: The Minerals, Metals & Materials Society). ISBN: 978-087339580-9. http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=23244454975&origin=inward

  33. Reis A, Xu Z, Tol RV, Neto R (2012) Modelling feeding flow related shrinkage defects in aluminum castings. J Manuf Processes 14(1):1–7. https://doi.org/10.1016/j.jmapro.2011.05.003

    Article  Google Scholar 

  34. Wang H, Lu Y, Ripplinger K, Detwiler D, Luo AA (2016) A statistics-based cracking criterion of resin-bonded silica sand for casting process simulation. Metall Mater Trans B 48(1):260–267. https://doi.org/10.1007/s11663-016-0865-9

    Article  CAS  Google Scholar 

  35. Wang Q, Jones P, Wang Y, Gerard D (2011) Advances in computational tools for virtual casting of aluminum components. In: 1st world congress on integrated computational materials engineering, ICME. Seven Springs, pp 217–222. https://doi.org/10.1002/9781118147726.ch30

  36. Wang Y, Li XQ, Li RQ, Tian Y (2019) Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting. Gongcheng Kexue Xuebao 41(1):96–103. https://doi.org/10.13374/j.issn2095-9389.2019.01.010

  37. Wang Y, Schwam D (2012) Application of bayesian analysis method in the design optimization of permanent casting mold, ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012, PARTS A, B, AND C ed., Houston, pp 17–21. https://doi.org/10.1115/IMECE2012-86413

  38. Xu Q, Li B, Liu B (2009) Application of microstructure simulation by modified CA method to Al alloy casting production. In: 4th international conference organised by the CAST CRC, on behalf of the global light metals alliance. Gold Coast, pp 199–202. https://doi.org/10.4028/www.scientific.net/MSF.618-619.199

  39. Yan X, Lin JC (2006) Prediction of hot tearing tendency for multicomponent aluminum alloys. Metall Mater Trans B 37(6):913–918. https://doi.org/10.1007/BF02735013

    Article  Google Scholar 

  40. Canales AA, Carrera E, Silva JT, Valtierra S, Colás R (2012) Mechanical properties in as-cast and heat treated Al-Si-Cu alloys. Int J Microstruct Mater Prop 7(4):281–300. https://doi.org/10.1504/IJMMP.2012.048518

    Article  CAS  Google Scholar 

  41. Mohamed AMA, Samuel FH, Samuel AM, Doty HW, Valtierra S (2008) Influence of tin addition on the microstructure and mechanical properties of Al-Si-Cu-Mg and Al-Si-Mg casting alloys. Metall Mater Trans A 39(3):490–501. https://doi.org/10.1007/s11661-007-9454-5

    Article  CAS  Google Scholar 

  42. Samuel AM, Doty HW, Valtierra S, Samuel FH (2018) Metallurgical aspects of inclusion assessment in Al–6%Si casting alloy using the LiMCA technique. Int J Metalcasting. 12(3):643–657. https://doi.org/10.1007/s40962-017-0203-2

  43. Wang W, Du A, Zhao X, Fan Y, Wang X, Ma R, Cao X, Li Q (2018) Effect of Si addition on the stability of Al-10Ti-5Cu-xSi alloy/SiC interface. Compos Interfaces 25(9):761–770. https://doi.org/10.1080/09276440.2018.1439627

    Article  CAS  Google Scholar 

  44. Wang Y, Yang M, You J, Zheng W, Di Y, Feng N, Ma S (2007) Study of making casting grade Aluminum-silicon alloy with coarse aluminum-silicon alloy produced by carbothermal reduction of aluminous ore, TMS 2007 Annual Meeting and Exhibition. Orlando, pp 477–482. ISBN: 978-087339659-2. http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=34547922094&origin=inward

  45. Xu K, Wang Y, Shen SH, Xia X, Tu WC, Karuppiah L, Yang H, Ge Z, Lei Y, Allen M, Yoshida N, Chang LW, Liu B, Okazaki M, Brand A (2012) Aluminum alloy formation and impacts in advanced replacement metal gate process. In: 20th international materials research congress, IMRC 2011. Cancun, pp 107–115. https://doi.org/10.1557/opl.2012.113

  46. Yang S-F, Wang T-M, Shie Z-YJ, Jiang S-J, Hwang C-S, Tzeng C-C (2014) Fine Al2O3 powder produced by radio-frequency plasma from aluminum dross. IEEE Trans Plasma Sci 42(12):3751–3755. https://doi.org/10.1109/TPS.2014.2333543

    Article  CAS  Google Scholar 

  47. Zhang J, Liu J, Li Q (2019) Microstructure and properties of Al-Ga alloys with different Mg/Sn ratios. Xiyou Jinshu 43(6):592–597. https://doi.org/10.13373/j.cnki.cjrm.XY18060008.html

    Article  Google Scholar 

  48. Chirita G, Stefanescu I, Soares D, Cruz D, Silva FS (2008) Centrifugal casting features/metallurgical characterization of aluminum alloys. In: 9th international conference on multiscale and functionally graded materials, FGM IX. American Institute of Physics Inc., Oahu Island, pp 598–603. https://doi.org/10.1063/1.2896847

  49. Chirita G, Stefanescu I, Soares DF, Silva FS (2010) On the ability of producing FGMs with an AlSi12 aluminium alloy by using centrifugal casting. Int J Mater Prod Technol 39(1/2):30–43. https://doi.org/10.1504/IJMPT.2010.034258

    Article  CAS  Google Scholar 

  50. Li Q, Wu Y, Deng H, Mao D (2008) Harmonic analysis of electromagnetic casting system. In: 7th world congress on intelligent control and automation, WCICA'08. Chongqing, pp 691–696. https://doi.org/10.1109/WCICA.2008.4593005

  51. Li CM, Chen ZQ, Zeng SM, Cheng NP, Geng ZH, Li Q (2011) Effect of stepped solution treatment on microstructure and properties of AA7085 aluminum alloy, 2011 International Conference on Chemical Engineering and Advanced Materials, CEAM 2011. Changsha, pp 786–792. https://doi.org/10.4028/www.scientific.net/AMR.239-242.786

  52. Ning Z, Wang H, Sun J (2006) The effect of initial microstructure of A356 alloys on the mechanical behavior in the semisolid state. In: 9th international conference on semi-solid processing of alloys and composites, S2P 2006. Trans Tech Publications Ltd, Busan, pp 449–452. https://doi.org/10.4028/www.scientific.net/SSP.116-117.449

  53. Qingming C, Xia C, Changjun C, Siqian B, Schwam D (2009) Characteristics and influnce factors of mold filling process in permanant mold with a slot gating system. China Foundry. 6(4):328–332. http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77953854879&origin=inward

  54. Wang HJ, Xu J, Zhang ZF, Liang B, Gao MW (2015) Application research of a new coupling stirring on DC casting process for large-sized aluminum ingots. In: Han Y, Wu Y, Liu X (eds) Chinese materials congress, CMC 2014. Trans Tech Publications Ltd, pp 48–54. https://doi.org/10.4028/www.scientific.net/MSF.817.48

  55. Wang T, Chen C, Zhang X, Tang Y (2012) Production of thin-walled aluminum castings with gypsum mold casting combining with vacuum pouring and solidification under pressure. Tezhong Zhuzao Ji Youse Hejin 32(3):264–266. http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84861771143&origin=inward

  56. Xu Z, Zou Y, Gu H, Zeng J (2007) Investigations on hydrogen content change in melt aluminum during casting under adjusted pressure. In: Zhou Y, Tu ST, Xie X (eds) Progresses in fracture and strength of materials and structures, 1–4. Trans Tech Publications Ltd, Stafa-Zurich, vol. 353–358, PART 4, pp 3059–3062. http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=36049028991&origin=inward

  57. Zeng J, Hu Z, Xu Z, Yan Y, He C, He H (2014) An additive manufacturing process combined with investment casting, SAMPE Tech Seattle 2014 Conference. Soc. for the Advancement of Material and Process Engineering. ISBN: 978-193455116-5. http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84907766293&origin=inward

  58. Zhou ZP, Li RD, Ma JC, Wang Y (2005) Effect of melt mixing on the microstructure in Al-5%Fe alloy. Hangkong Cailiao Xuebao/J Aeronaut Mater 25(4):6–9. http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=23944476874&origin=inward

  59. Puga H, Barbosa J, Soares D, Silva F, Ribeiro S (2009) Recycling of aluminium swarf by direct incorporation in aluminium melts. J Mater Process Technol 209(11):5195–5203. https://doi.org/10.1016/j.jmatprotec.2009.03.007

    Article  CAS  Google Scholar 

  60. Wei X, Wang H, Liu C, Cao H, Yan P, Sun Z (2019) A review on recycling of waste aluminum alloy. Guocheng Gongcheng Xuebao/Chin J Process Eng 19(1):45–54. https://doi.org/10.12034/j.issn.1009-606X.218180

  61. Cullen JM, Allwood JM (2013) Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environ Sci Technol 47(7):3057–3064. https://doi.org/10.1021/es304256s

    Article  CAS  Google Scholar 

  62. Gaustad G, Olivetti E, Kirchain R (2012) Improving aluminum recycling: a survey of sorting and impurity removal technologies. Resour Conserv Recycl 58:79–87. https://doi.org/10.1016/j.resconrec.2011.10.010

    Article  Google Scholar 

  63. Liu G, Müller DB (2012) Addressing sustainability in the aluminum industry: a critical review of life cycle assessments. J Clean Prod 35:108–117. https://doi.org/10.1016/j.jclepro.2012.05.030

    Article  Google Scholar 

  64. Løvik AN, Modaresi R, Müller DB (2014) Long-term strategies for increased recycling of automotive aluminum and its alloying elements. Environ Sci Technol 48(8):4257–4265. https://doi.org/10.1021/es405604g

    Article  CAS  Google Scholar 

  65. Nakajima K, Takeda O, Miki T, Matsubae K, Nakamura S, Nagasaka T (2010) Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ Sci Technol 44(14):5594–5600. https://doi.org/10.1021/es9038769

    Article  CAS  Google Scholar 

  66. Paraskevas D, Kellens K, Dewulf W, Duflou JR (2015) Environmental modelling of aluminium recycling: a Life Cycle Assessment tool for sustainable metal management. J Clean Prod 105:357–370. https://doi.org/10.1016/j.jclepro.2014.09.102

    Article  CAS  Google Scholar 

  67. Liu B, Xu Q, Jing T, Shen H, Han Z (2011) Advances in multi-scale modeling of solidification and casting processes. JOM 63(4):19–25. https://doi.org/10.1007/s11837-011-0054-x

    Article  Google Scholar 

  68. Liu B, Xiong S, Xu Q (2007) Study on macro- and micromodeling of the solidification process of aluminum shape casting. Metall Mater Trans B 38(4):525–532. https://doi.org/10.1007/s11663-007-9073-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded in part by the National Research Council (CNPq) process no 310228/2019-0 regarding the productivity grant granted to researcher Rosana C. S. Schneider and by process no 303934/2019-0 regarding the productivity grant granted by the National Research Council (CNPq) to researcher Liane M. Kipper.

Author information

Authors and Affiliations

Authors

Contributions

Both authors substantially conceived, designed, and wrote the review, and they contributed to data collection, analysis, and comments.

Corresponding author

Correspondence to Gilson Gilmar Holzschuh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

The contributing editor for this article was Hojong Kim.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzschuh, G.G., Moraes, J.A.R., Garcia, S.B. et al. Sustainable Applications for Disposal of Recycled Aluminum: A Systematic Literature Review Using the SciMAT Software. J. Sustain. Metall. 8, 945–963 (2022). https://doi.org/10.1007/s40831-022-00552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00552-6

Keywords

Navigation