Skip to main content
Log in

Biological chemistry of superoxide radicals

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

Superoxide radicals are produced by the one-electron reduction of molecular oxygen. These radicals are formed physiologically as a by-product of oxygen metabolism, and they are important in toxicology as a product of the metabolism of redox-active xenobiotics. Superoxide is also produced by dedicated enzymes, and in these situations it plays a role in combatting microbial pathogens and regulating cellular processes. This article covers the properties and biological chemistry of superoxide radicals. It considers how they are produced, what biomolecules they react with, and the reactions that contribute to their toxicity. It also considers the function of superoxide dismutases, the enzymes responsible for removal of most of the superoxide produced in living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

References [1, 2, 7, 14, 16, 19, 40] are books and reviews that are recommended reading for newcomers to the field.

  1. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine, 5th edn. Oxford University Press, Oxford, p 944

    Book  Google Scholar 

  2. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286

    Article  PubMed  CAS  Google Scholar 

  3. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100

    Article  CAS  Google Scholar 

  4. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  5. Imlay JA (2011) Redox pioneer: professor Irwin Fridovich. Antioxid Redox Signal 14:335–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fridovich I (1975) Superoxide dismutases. Annu Rev Biochem. 44:147–159

    Article  PubMed  CAS  Google Scholar 

  7. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  8. Carlioz A, Touati D (1986) Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J 5:623–630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Imlay JA (2003) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454

    Article  CAS  Google Scholar 

  10. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Paul B, Sbarra AJ (1968) The role of the phagocyte in host-parasite interactions. 13. The direct quantitative estimation of H2O2 in phagocytizing cells. Biochim Biophys Acta 156:168–178

    Article  PubMed  CAS  Google Scholar 

  12. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms: the production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radical Biol Med 18:775–794

    Article  CAS  Google Scholar 

  14. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  15. Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T et al (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45:1–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sies H, Berndt C, Jones DP (2017) Oxidative Stress. Annu Rev Biochem 86:715–748

    Article  PubMed  CAS  Google Scholar 

  17. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  PubMed  CAS  Google Scholar 

  18. Moncada S, Higgs EA (1995) Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J 9:1319–1330

    Article  PubMed  CAS  Google Scholar 

  19. Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cabelli DE, Bielski BHJ (1983) Kinetics and mechanism for the oxidation of ascorbic acid/ascorbate by hydroperoxyl/superoxide radicals. A pulse radiolysis and stopped flow photolysis study. J Phys Chem 87:1809–1812

    Article  CAS  Google Scholar 

  21. Winterbourn CC, Metodiewa D (1994) The reaction of superoxide with reduced glutathione. Arch Biochem Biophys 314:284–290

    Article  PubMed  CAS  Google Scholar 

  22. Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333

    PubMed  CAS  Google Scholar 

  23. Flint DH, Tuminello JF, Emptage MH (1993) The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 268:22369–22376

    PubMed  CAS  Google Scholar 

  24. Srinivasan C, Liba A, Imlay JA, Valentine JS, Gralla EB (2000) Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance. J Biol Chem 275:29187–29192

    Article  PubMed  CAS  Google Scholar 

  25. Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177

    Article  PubMed  CAS  Google Scholar 

  26. Thomas SR, Witting PK, Drummond GR (2008) Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 10:1713–1765

    Article  PubMed  CAS  Google Scholar 

  27. Augusto O, Goldstein S, Hurst JK, Lind J, Lymar SV, Merenyi G et al (2019) Carbon dioxide-catalyzed peroxynitrite reactivity—the resilience of the radical mechanism after two decades of research. Free Radic Biol Med 135:210–215

    Article  PubMed  CAS  Google Scholar 

  28. Szabo C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    Article  PubMed  CAS  Google Scholar 

  29. Winterbourn CC, Kettle AJ (2003) Radical-radical reactions of superoxide: a potential route to toxicity. Biochem Biophys Res Commun 305:729–736

    Article  PubMed  CAS  Google Scholar 

  30. Jonsson M, Lind T, Reitberger TE, Eriksen TE, Merenyi G (1993) Free radical combination reactions involving phenoxyl radicals. J Phys Chem 97:8229–8233

    Article  CAS  Google Scholar 

  31. Jin F, Leitich J, von Sonntag C (1993) The superoxide radical reacts with tyrosine-derived phenoxyl radicals by addition rather than by electron transfer. J Chem Soc Perkin Trans II 93:1583–1588

    Article  Google Scholar 

  32. Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ (2004) Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem J 381:241–248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Das AB, Sadowska-Bartosz I, Konigstorfer A, Kettle AJ, Winterbourn CC (2018) Superoxide dismutase protects ribonucleotide reductase from inactivation in yeast. Free Radic Biol Med 116:114–120

    Article  PubMed  CAS  Google Scholar 

  34. Meotti FC, Jameson GN, Turner R, Harwood DT, Stockwell S, Rees MD et al (2011) Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation. J Biol Chem 286:12901–12911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Winterbourn CC (2014) The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta 1840:730–738

    Article  PubMed  CAS  Google Scholar 

  36. Winterbourn CC, Kettle AJ (2013) Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal 18:642–660

    Article  PubMed  CAS  Google Scholar 

  37. Gu M, Imlay JA (2013) Superoxide poisons mononuclear iron enzymes by causing mismetallation. Mol Microbiol 89:123–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Winterbourn CC (2013) The biological chemistry of hydrogen peroxide. Methods Enzymol 528:3–25

    Article  PubMed  CAS  Google Scholar 

  39. Merkofer M, Kissner R, Hider RC, Brunk UT, Koppenol WH (2006) Fenton chemistry and iron chelation under physiologically relevant conditions: electrochemistry and kinetics. Chem Res Toxicol 19:1263–1269

    Article  PubMed  CAS  Google Scholar 

  40. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed  CAS  Google Scholar 

  41. Robb EL, Hall AR, Prime TA, Eaton S, Szibor M, Viscomi C et al (2018) Control of mitochondrial superoxide production by reverse electron transport at complex I. J Biol Chem 293:9869–9879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  PubMed  CAS  Google Scholar 

  43. Nauseef WM (2008) Biological roles for the NOX family NADPH oxidases. J Biol Chem 283:16961–16965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Donko A, Peterfi Z, Sum A, Leto T, Geiszt M (2005) Dual oxidases. Philos Trans R Soc Lond B Biol Sci 360:2301–2308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Leto TL, Morand S, Hurt D, Ueyama T (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signa 11:2607–2619

    Article  CAS  Google Scholar 

  46. Ushio-Fukai M (2006) Localizing NADPH oxidase-derived ROS. Sci STKE 2006(349):re8. https://doi.org/10.1126/stke.3492006re8

    Article  Google Scholar 

  47. Nauseef WM (2019) The phagocyte NOX2 NADPH oxidase in microbial killing and cell signaling. Curr Opin Immunol 60:130–134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Winterbourn CC, Kettle AJ, Hampton MB (2013) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792

    Article  CAS  Google Scholar 

  49. Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    Article  PubMed  CAS  Google Scholar 

  50. Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM (2013) Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 93:185–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Prolo C, Alvarez MN, Radi R (2014) Peroxynitrite, a potent macrophage-derived oxidizing cytotoxin to combat invading pathogens. BioFactors 40:215–225

    Article  PubMed  CAS  Google Scholar 

  52. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182

    Article  PubMed  CAS  Google Scholar 

  53. Pullar JM, Vissers MCM, Winterbourn CC (2000) Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life 50:259–266

    Article  PubMed  CAS  Google Scholar 

  54. Davies MJ, Hawkins CL, Pattison DI, Rees MD (2008) Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1199–1223

    Article  PubMed  CAS  Google Scholar 

  55. Lau D, Baldus S (2006) Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther 111:16–26

    Article  PubMed  CAS  Google Scholar 

  56. Lambeth JD, Neish AS (2014) Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu Rev Pathol 9:119–145

    Article  PubMed  CAS  Google Scholar 

  57. Fridovich I (1970) Quantitative aspects of the production of superoxide anion by milk xanthine oxidase. J Biol Chem 245:4053–4057

    PubMed  CAS  Google Scholar 

  58. Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797

    Article  PubMed  CAS  Google Scholar 

  59. Winterbourn CC (1985) Free-radical production and oxidative reactions of hemoglobin. Environ Health Perspect 64:321–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kappus H (1986) Overview of enzyme systems involved in bioreduction of drugs and in redox cycling. Biochem Pharmacol 35:1–6

    Article  PubMed  CAS  Google Scholar 

  61. Brunmark A, Cadenas E (1989) Redox and addition chemistry of quinoid compounds and its biological implications. Free Radical Biol Med 7:435–477

    Article  CAS  Google Scholar 

  62. O’Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80:1–41

    Article  PubMed  Google Scholar 

  63. O’Brien PJ (2000) Peroxidases. Chem Biol Interact 129:113–139

    Article  PubMed  Google Scholar 

  64. Davies MJ, Hawkins CL, Pattison DI, Rees MD (2008) Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Sign 10:1199–1234

    Article  CAS  Google Scholar 

  65. Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37:287–303

    Article  PubMed  CAS  Google Scholar 

  66. Ross D, Moldeus P (1985) Generation of reactive species and fate of thiols during peroxidase-catalysed metabolic activation of aromatic amines and phenols. Environ Hlth Perspect 64:253–257

    Article  CAS  Google Scholar 

  67. Wilson I, Wardman P, Cohen GM, D’Arcy Doherty M (1986) Reductive role of glutathione in the redox cycling of oxidizable drugs. Biochem Pharmacol 35:21–22

    Article  PubMed  CAS  Google Scholar 

  68. Winterbourn CC (1993) Superoxide as an intracellular radical sink. Free Radic Biol Med 14:85–90

    Article  PubMed  CAS  Google Scholar 

  69. Simic MG (1990) Pulse radiolysis in study of oxygen radicals. Methods Enzymol 186:89–100

    Article  PubMed  CAS  Google Scholar 

  70. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  PubMed  CAS  Google Scholar 

  71. Nauseef WM (2014) Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim Biophys Acta 1840:757–767

    Article  PubMed  CAS  Google Scholar 

  72. Tan AS, Berridge MV (2000) Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. J Immunol Methods 238:59–68

    Article  PubMed  CAS  Google Scholar 

  73. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022

    Article  PubMed  CAS  Google Scholar 

  74. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB et al (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6

    Article  PubMed  CAS  Google Scholar 

  75. Kalyanaraman B, Dranka BP, Hardy M, Michalski R, Zielonka J (2014) HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes—the ultimate approach for intra- and extracellular superoxide detection. Biochim Biophys Acta 1840:739–744

    Article  PubMed  CAS  Google Scholar 

  76. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol 286:R431–R444

    CAS  Google Scholar 

  77. Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58:61–97

    PubMed  CAS  Google Scholar 

  78. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M et al (2014) Superoxide dismutases and superoxide reductases. Chem Rev 114:3854–3918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Fetherolf MM, Boyd SD, Taylor AB, Kim HJ, Wohlschlegel JA, Blackburn NJ et al (2017) Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J Biol Chem 292:12025–12040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Medinas DB, Augusto O (2010) Mechanism of the peroxidase activity of superoxide dismutase 1. Free Radic Biol Med 49:682

    Article  PubMed  CAS  Google Scholar 

  81. Winterbourn CC, French JK, Claridge RF (1978) Superoxide dismutase as an inhibitor of reactions of semiquinone radicals. FEBS Lett 94:269–272

    Article  PubMed  CAS  Google Scholar 

  82. Forman HJ, Azzi A (1997) On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J 11:374–375

    Article  PubMed  CAS  Google Scholar 

  83. Lenzen S (2017) Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic beta-cells. Biochim Biophys Acta 1861:1929–1942

    Article  CAS  Google Scholar 

  84. Lortz S, Gurgul-Convey E, Lenzen S, Tiedge M (2005) Importance of mitochondrial superoxide dismutase expression in insulin-producing cells for the toxicity of reactive oxygen species and proinflammatory cytokines. Diabetologia 48:1541–1548

    Article  PubMed  CAS  Google Scholar 

  85. Silverman JM, Fernando SM, Grad LI, Hill AF, Turner BJ, Yerbury JJ et al (2016) Disease mechanisms in ALS: misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways. Cell Mol Neurobiol 36:377–381

    Article  PubMed  CAS  Google Scholar 

  86. Adam V, Royant A, Niviere V, Molina-Heredia FP, Bourgeois D (2004) Structure of superoxide reductase bound to ferrocyanide and active site expansion upon X-ray-induced photo-reduction. Structure 12:1729–1740

    Article  PubMed  CAS  Google Scholar 

  87. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    Article  PubMed  CAS  Google Scholar 

  88. Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ, Kalyanaraman B et al (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561

    Article  PubMed  CAS  Google Scholar 

  90. Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842

    Article  PubMed  CAS  Google Scholar 

  91. Buettner GR (2011) Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem 11:341–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  PubMed  CAS  Google Scholar 

  94. Koppenol WH, Stanbury DM, Bounds PL (2010) Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free Radic Biol Med 49:317–322

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine C. Winterbourn.

Additional information

In memory of Irwin Fridovich (August 2, 1929–November 2, 2019).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winterbourn, C.C. Biological chemistry of superoxide radicals. ChemTexts 6, 7 (2020). https://doi.org/10.1007/s40828-019-0101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-019-0101-8

Keywords

Navigation