Skip to main content

Advertisement

Log in

Development of Reduction Scenarios Based on Urban Emission Estimation and Dispersion of Exhaust Pollutants from Light Duty Public Transport: Case of Tabriz, Iran

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

The transportation sector is one of the major air pollution sources in cities and accounts for about 72% of total air pollution in Tabriz, Iran. The economic burden of air pollution on Iran’s economy was estimated to be 8 and 10 billion dollars in 2005 and 2010, respectively. Using air pollution models, including emission and dispersion models, has been proposed as a logical solution to overcome problems such as expensive measurement methods and in some cases, difficulty and impossibility of direct measurements. In this paper, IVE emission model was used for estimating emission amounts and emission factors of taxi fleet of Imam Khomeini Street, one of main and busiest streets in Tabriz, as a representative street and for studying effects of different scenarios. AERMOD dispersion model was used for investigating the dispersion pattern of emitted pollutants from this fleet and to estimate the effect of using local base emission factors and replacement of present taxi fleet by environmental friendly vehicles in this city. CO, CH4, and NOx pollutants with quantities of 108, 20.7, and 5.4 g/km have the highest emission factor among all pollutants. Amount of hourly emissions per each pollutant, daily emission amount by technology types, and daily emission amount of each technology by pollutant types were also examined. CO emission has the highest amount at 7–8 in the morning, and at noon hours, emission of NOx and VOC increases. Technologies with old fuel injection and emission control systems and higher mileage have higher level of pollution emission. Investigating dispersion of pollutants from this fleet in the atmosphere shows pollutants movement in the northwest direction. Performance statistics of AERMOD model, such as FB, NMSE, MG, VG, FAC2, and R by use of pollution level of two adjacent air pollution monitoring stations were determined to continue. Three air pollution scenarios are used to assay effects of using site-specific base emission factors; replacement of worn-out portion of fleet with two distinct technology types (gasoline fuel and CNG fuel) were investigated. As a result under the first and second scenarios, 6.4% and 3.9% decrease of GWP would be estimated respectively and under the third scenario, 7.8% increase of GWP relative to the present study was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amir Jamshidi, G., Roorda, M.J.: Development of simulated driving cycles for light, medium, and heavy duty trucks: case of the Toronto waterfront area. Transp. Res. D. 34, 255–266 (2015). https://doi.org/10.1016/j.trd.2014.11.010

    Article  Google Scholar 

  2. Askariyeh, M.H., Kota, S.H., Vallamsundar, S., Zietsman, J., Ying, Q.: AERMOD for near-road pollutant dispersion: evaluation of model performance with different emission source representations and low wind options. Transp. Res. Part D: Transp. Environ. 57, 392–402 (2017). https://doi.org/10.1016/j.trd.2017.10.008

    Article  Google Scholar 

  3. Banitalebi, E., Hosseini, V.: Development of hot exhaust emission factors for Iranian-made Euro-2 certified light-duty vehicles. Environ. Sci. Technol. 50(1), 279–284 (2015) http://pubs.acs.org/doi/abs/10.1021/acs.est.5b05611

    Article  Google Scholar 

  4. Caputo, M., Gimenez, M., Schlamp, M.: Intercomparison of atmospheric dispersion models. Atmos. Environ. 37(18), 2435–2449 (2003). https://doi.org/10.1016/S1352-2310(03)00201-2

    Article  Google Scholar 

  5. Census results of population and housing: Statistical Center of Iran, Country Planning and Budget Organization. Available at https://www.amar.org.ir. Accessed June 2017 (2016)

  6. CGIAR-CSI: The CGIAR Consortium for Spatial Information Available at http://srtm.csi.cgiar.org/index.asp. Accessed 10 Mar 2017 (2017)

  7. Chang, J.C., Hanna, S.R.: Air quality model performance evaluation. Meteorog. Atmos. Phys. 87(1-3), 167–196 (2004). https://doi.org/10.1007/s00703-003-0070-7

    Article  Google Scholar 

  8. Chen, H., Bai, S., Eisinger, D., Niemeier, D., Claggett, M.: Predicting near-road PM2.5 concentrations: comparative assessment of CALINE4, CAL3QHC and AERMOD. Transp. Res. Rec. 2123(1), 26–37 (2009). https://doi.org/10.3141/2123-04

    Article  Google Scholar 

  9. Choudhary, A., Gokhale, S.: On-road measurements and modelling of vehicular emissions during traffic interruption and congestion events in an urban traffic corridor. Atmos Pollut Res. 10(2), 480–492 (2019). https://doi.org/10.1016/j.apr.2018.09.008

    Article  Google Scholar 

  10. Cimorelli, A., Perry, S., Venkatram, A., Weil, J., Paine, R., Wilson, R., Lee, R., Peters, W., Brode, R.: AERMOD: description of model formulation. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Emissions Monitoring and Analysis Division, Research Triangle Park (2004)

    Google Scholar 

  11. Dung, C.T., Miwa, T., Sato, H., Morikawa, T.: Analysis on characteristics of passenger car and motorcycle fleets and their driving conditions in developing country: a case study in Ho Chi Minh City, Vietnam. J. East. Asia Soc. Transp. Stud. 11, 890–905 (2015). https://doi.org/10.11175/easts.11.890

    Article  Google Scholar 

  12. Elfasakhany, A.: Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends. Energy Convers. Manag. 88, 277–283 (2014). https://doi.org/10.1016/j.enconman.2014.08.031

    Article  Google Scholar 

  13. Fuglestvedt, J.S., Shine, K.P., Berntsen, T., Cook, J., Lee, D.S., Stenke, A., Skeie, R.B., Velders, G.J.M., Waitz, I.A.: Transport impacts on atmosphere and climate: metrics. Atmos. Environ. 44(37), 4648–4677 (2010). https://doi.org/10.1016/j.atmosenv.2009.04.044

    Article  Google Scholar 

  14. Gibson, M., Kundu, S., Satish, M.: Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmos Pollut Res. 4(2), 157–167 (2013). https://doi.org/10.5094/APR.2013.016

    Article  Google Scholar 

  15. Guo, H., Zhang, Q., Shi, Y., Wang, D.: On-road remote sensing measurements and fuel-based motor vehicle emission inventory in Hangzhou, China. Atmos. Environ. 41(14), 3095–3107 (2007a). https://doi.org/10.1016/j.atmosenv.2006.11.045

    Article  Google Scholar 

  16. Guo, H., Zhang, Q., Shi, Y., Wang, D.: Evaluation of the international vehicle emission (IVE) model with on-road remote sensing measurements. J. Environ. Sci. 19(7), 818–826 (2007b). https://doi.org/10.1016/S1001-0742(07)60137-5

    Article  Google Scholar 

  17. Gurjar, B.R., Molina, L.T., Ojha, C.S.P.: Air pollution – health and environmental impacts. CRC Press, Boca Raton (2010) ISBN: 1439809631, 9781439809631

    Book  Google Scholar 

  18. Hall, D.J., Spanton, A.M., Bennett, M., Dunkerley, F., Griffiths, R.F., Fisher, B.E.A., Timmis, R.J.: Evaluation of new generation atmospheric dispersion models. Int J Environ Pollut. 18(1), 22–32 (2002). https://doi.org/10.1504/IJEP.2002.000692

    Article  Google Scholar 

  19. Holmes, N.S., Morawska, L.: A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmos. Environ. 40(2006), 5902–5928 (2006). https://doi.org/10.1016/j.atmosenv.2006.06.003

    Article  Google Scholar 

  20. Hussain Shah, I., Zeeshan, M.: Estimation of light duty vehicle emissions in Islamabad and climate co-benefits of improved emission standards implementation. Atmos. Environ. 127, 236–243 (2016). https://doi.org/10.1016/j.atmosenv.2015.12.012

    Article  Google Scholar 

  21. IPCC: In: Core writing team, Pachauri, R.K., Meyer, L.A. (eds.) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva (2014) 151 pp

    Google Scholar 

  22. Iran Statistical Yearbook 2013–2014: Statistical Center of Iran, Presidency of the I.R.I Plan and Budget Organization. Available at https://www.amar.org.ir/english/Iran-Statistical-Yearbook. Accessed 24 June 2017 2013

  23. ISSRC (International Sustainable Systems Research Center): Available at http://www.issrc.org/ive/. Accessed 29 Nov 2016 (2016)

  24. Jimenez-Palacios, J.L.: Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing (Doctoral Dissertation), Massachusetts Institute of Technology (1999)

  25. Jinawa, L., Thepanondh, S.: Success of fuel quality improving policy in reducing benzene air concentrations in Bangkok. Int J GEOMATE. 11(24), 2341–2347 (2016)

    Google Scholar 

  26. Kahforooshan, D., Fatehifar, E.: Tabriz Air Pollutants List. Sahand Technology University, Tabriz (2013) (in Persian)

    Google Scholar 

  27. Kholod, N., Evans, M., Gusev, E., Yu, S., Malyshev, V., Tretyakova, S., Barinov, A.: A methodology for calculating transport emissions in cities with limited traffic data: case study of diesel particulates and black carbon emissions in Murmansk. Sci. Total Environ. 547, 305–313 (2016). https://doi.org/10.1016/j.scitotenv.2015.12.151

    Article  Google Scholar 

  28. Kota, S.H., Zhang, H., Chen, G.W., Schade, G., Ying, Q.: Evaluation of on-road vehicle CO and NOx National Emission Inventories using an urban-scale source-oriented air quality model. Atmos. Environ. 85, 99–108 (2014). https://doi.org/10.1016/j.atmosenv.2013.11.020

    Article  Google Scholar 

  29. Krejcie, R., Morgan, D.: Determining sample size for research activities. Educ. Psychol. Meas. 30(3), 607–610. http://journals.sagepub.com/doi/abs/10.1177/001316447003000308 (1970)

    Article  Google Scholar 

  30. Lakes Environmental: Available at https://www.weblakes.com/products/wrplot/index.html. Aaccessed 10 Apr 2017 (2016)

  31. Lents, J., Davis, N.: IVE model user’s guide, model and data files, technical report submitted to the US Environmental Protection Agency. Available at http://www.issrc.org. Accessed 29 Nov 2016 (2009)

  32. Lobscheid, A., Nazaroff, W., Spears, M., Horvath, A., McKone, T.: Intake fractions of primary conserved air pollutants emitted from on-road vehicles in the United States. Atmos. Environ. 63, 298–305 (2012). https://doi.org/10.1016/j.atmosenv.2012.09.027

    Article  Google Scholar 

  33. Mashregh News: News code: 405808, release at 15 April 2015. Available at https://www.mashreghnews.ir/news/405808. Accessed 23 May 2017 (2015)

  34. Mishra, M., Goyal, P.: Estimation of vehicular emissions using dynamic emission factors: a case study of Delhi, India. Atmos. Environ. 98, 1–7 (2014). https://doi.org/10.1016/j.atmosenv.2014.08.047

    Article  Google Scholar 

  35. Misra, A., Roorda, M.J., MacLean, H.L.: An integrated modelling approach to estimate urban traffic emissions. Atmos. Environ. 73, 81–91 (2013). https://doi.org/10.1016/j.atmosenv.2013.03.013

    Article  Google Scholar 

  36. Mohammadiha, A., Malakooti, H., Esfahanian, V.: Development of reduction scenarios for criteria air pollutants emission in Tehran traffic sector, Iran. Sci. Total Environ. 622-623, 17–28 (2018). https://doi.org/10.1016/j.scitotenv.2017.11.312

    Article  Google Scholar 

  37. Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H.: Anthropogenic and natural radiative forcing. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The physical science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  38. Nesamani, K.S.: Estimation of automobile emissions and control strategies in India. Sci. Total Environ. 408(8), 1800–1811 (2010). https://doi.org/10.1016/j.scitotenv.2010.01.026

    Article  Google Scholar 

  39. NOAA/ESRL: Radiosonde Database. Available at https://ruc.noaa.gov/raobs/. Accessed 20 Apr 2017 (2017)

  40. Pouresmaeili, M.A., Aghayan, I., Taghizadeh, S.A.: Development of a Mashhad driving cycle for passenger car to model vehicle exhaust emissions calibrated using on-board measurements. Sustain. Cities Soc. 36, 12–20 (2018). https://doi.org/10.1016/j.scs.2017.09.034

    Article  Google Scholar 

  41. Raeissi, P., Harati-Khalilabad, T., Rezapour, A., Hashemi, S.Y., Mousavi, A., Khodabakhshzadeh, S.: Effects of air pollution on public and private health expenditures in Iran: a time series study (1972-2014). J. Prev. Med. Public Health. 51(3), 140–147 (2018)

    Article  Google Scholar 

  42. Rowangould, G.: A new approach for evaluating regional exposure to particulate matter emissions from motor vehicles. Transp. Res. D. 34, 307–317 (2015). https://doi.org/10.1016/j.trd.2014.11.020

    Article  Google Scholar 

  43. Shafie-Pour, M., Tavakoli, A.: On-road vehicle emissions forecast using IVE simulation model. Int J Environ Res. 7, 367–376 (2013). https://doi.org/10.22059/IJER.2013.614

    Article  Google Scholar 

  44. Shahbazi, H., Reyhanian, M., Hosseini, V., Afshin, H.: The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: an emission inventory approach. Emission Control Sci Technol. 2(1), 44–56 (2016a). https://doi.org/10.1007/s40825-015-0031-x

    Article  Google Scholar 

  45. Shahbazi, H., Taghvaee, S., Hosseini, V., Afshin, H.: A GIS based emission inventory development for Tehran. Urban Clim. 17, 216–229 (2016b). https://doi.org/10.1016/j.uclim.2016.08.005

    Article  Google Scholar 

  46. Shahbazi, H., Ganjiazad, R., Hosseini, V., Hamedi, M.: Investigating the influence of traffic emission reduction plans on Tehran air quality using WRF/CAMx modeling tools. Transp. Res. D. 57, 484–495 (2017). https://doi.org/10.1016/j.trd.2017.08.001

    Article  Google Scholar 

  47. Shrestha, S.R., Oanh, N.T.K., Xu, Q., Rupakheti, M., Lawrence, M.G.: Analysis of the vehicle fleet in the Kathmandu Valley for estimation of environment and climate co-benefits of technology intrusions. Atmos. Environ. 81, 579–590 (2013). https://doi.org/10.1016/j.atmosenv.2013.09.050

    Article  Google Scholar 

  48. Sonawane, N., Patil, R., Sethi, V.: Health benefit modeling and optimization of vehicular pollution control strategies. Atmos. Environ. 60, 193–201 (2012). https://doi.org/10.1016/j.atmosenv.2012.06.060

    Article  Google Scholar 

  49. Stein, A., Isakov, V., Godwitch, J., Draxler, R.: A hybrid modeling approach to resolve pollutant concentrations in an urban area. Atmos. Environ. 41(40), 9410–9426 (2007). https://doi.org/10.1016/j.atmosenv.2007.09.004

    Article  Google Scholar 

  50. Tadano, Y., Borillo, G., Godoi, A., Cichon, A., Silva, T., Valebona, F., Errera, M., Penteado Neto, R., Rempel, D., Martin, L., Yamamoto, C., Godoi, R.: Gaseous emissions from a heavy-duty engine equipped with SCR after treatment system and fueled with diesel and biodiesel: assessment of pollutant dispersion and health risk. Sci. Total Environ. 500–501, 64–71 (2014). https://doi.org/10.1016/j.scitotenv.2014.08.100

    Article  Google Scholar 

  51. Tomasi, E., Antonacci, G., Giovannini, L., Zardi, D., Ragazzi, M.: Atmospheric dispersion modelling with AERMOD for comparative impact assessment of different pollutant emission sources in an alpine valley. WIT Trans. Ecol. Environ. 198, 431–442 (2015). https://doi.org/10.2495/AIR150371

    Article  Google Scholar 

  52. US-EPA: User’s guide for the AERMOD meteorological preprocessor (AERMET). Available at https://www3.epa.gov/ttn/scram/metobsdata_procaccprogs.htm#aermet. Accessed 22 Jan 2017 (2016)

  53. Wang, H., Chen, C., Huang, C., Fu, L.: On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China. Sci. Total Environ. 398(1-3), 60–67 (2008). https://doi.org/10.1016/j.scitotenv.2008.01.038

    Article  Google Scholar 

  54. Wang, G., Cheng, S., Lang, J., Li, S., Tian, L.: On-board measurements of gaseous pollutant emission characteristics under real driving conditions from light-duty diesel vehicles in Chinese cities. J Environ Sci. 46, 28–37 (2016). https://doi.org/10.1016/j.jes.2015.09.021

    Article  Google Scholar 

  55. WHO (World Health Organization): 7 million premature deaths annually linked to air pollution (2014)

  56. World Bank: Republic of Iran cost assessment of environmental degradation. Rural development, water and environment department, middle east and north Africa Region. Report No. 32043-IR. Available at http://documents.worldbank.org/curated/en/401941468284096627/Iran-Islamic-Republic-of-Cost-Assessment-of-Environmental-Degradation. Accessed 28 June 2017 (2005)

  57. Yu, L., Jia, S., Shi, Q.: Research on transportation-related emissions: current status and future directions. J. Air Waste Manage. Assoc. 59(2), 183–195 (2009). https://doi.org/10.3155/1047-3289.59.2.183

    Article  Google Scholar 

  58. Zhang, Q., Xu, J., Wang, G., Tian, W., Jiang, H.: Vehicle emission inventories projection based on dynamic emission factors: a case study of Hangzhou, China. Atmos. Environ. 42(20), 4989–5002 (2008). https://doi.org/10.1016/j.atmosenv.2008.02.010

    Article  Google Scholar 

  59. Zhang, Q., Fan, J., Yang, W., Ying, F., Bao, Z., Sheng, Y., Lin, C., Chen, X.: Influences of accumulated mileage and technological changes on emissions of regulated pollutants from gasoline passenger vehicles. J. Environ. Sci. 71, 197–206 (2018). https://doi.org/10.1016/j.jes.2018.03.021

    Article  Google Scholar 

  60. Zhang, S., Wu, Y., Yan, H., Du, X., Zhang, K.M., Zheng, X., Fu, L., Hao, J.: Black carbon pollution for a major road in Beijing: implications for policy interventions of the heavy-duty truck fleet. Transp. Res. Part D: Transp. Environ. 68, 110–121 (2019). https://doi.org/10.1016/j.trd.2017.07.013

    Article  Google Scholar 

  61. Zhou, Z., Tan, Q., Liu, H., Deng, Y., Wu, K., Lu, C., Zhoua, X.: Emission characteristics and high-resolution spatial and temporal distribution of pollutants from motor vehicles in Chengdu, China. Atmos Pollut Res. 10(3), 749–758 (2018). https://doi.org/10.1016/j.apr.2018.12.002

    Article  Google Scholar 

  62. Zou, B., Zhan, F.B., Wilson, J.G., Zeng, Y.: Performance of AERMOD at different time scales. Simul. Model. Pract. Theory. 18(5), 612–623 (2010). https://doi.org/10.1016/j.simpat.2010.01.005

    Article  Google Scholar 

  63. Outapa. P., Thepanondh, S.: Development of Air Toxic Emission Factor and Inventory of On-Road of Online Mobile Sources. Air, Soil and Waater Reaserch. 7, 1–10 (2014)

  64. Vardoulakis, S., Fisher, B. E. A., Pericleous, K., Gonzalez-Flesca, N., 2003. Modeling air quality in street canyons: a review. Atmospheric Environment 37, 155–182. https://doi.org/10.1016/S1352-2310(02)00857-9

    Article  Google Scholar 

  65. Zhu, R., Hu, J., Bao, X., He, L., Lai, Y., Zu, L., Li, Y., Su, S., 2016. Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures. Environmental Pollution 216, 223–234. https://doi.org/10.1016/j.envpol.2016.05.066

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Transportation Deputy of Tabriz Municipality for their valuable participation in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Zeinali Heris.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 7 Specification of IVE technology indexes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi Kalajahi, M., Khazini, L., Rashidi, Y. et al. Development of Reduction Scenarios Based on Urban Emission Estimation and Dispersion of Exhaust Pollutants from Light Duty Public Transport: Case of Tabriz, Iran. Emiss. Control Sci. Technol. 6, 86–104 (2020). https://doi.org/10.1007/s40825-019-00135-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-019-00135-0

Keywords

Navigation