Skip to main content

Advertisement

Log in

A Mathematical Model Analysis of Meningitis with Treatment and Vaccination in Fractional Derivatives

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop a new mathematical model based on the Atangana Baleanu Caputo (ABC) derivative to investigate meningitis dynamics. We explain why fractional calculus is useful for modeling real-world problems. The model contains all of the possible interactions that cause disease to spread in the population. We start with classical differential equations and extended them into fractional-order using ABC. Both local and global asymptotic stability conditions for meningitis-free and endemic equilibria are determined. It is shown that the model undergoes backward bifurcation, where the locally stable disease-free equilibrium coexists with an endemic equilibrium. We also find conditions under which the model’s disease-free equilibrium is globally asymptotically stable. The approach of fractional order calculus is quite new for such a biological phenomenon. The effects of vaccination and treatment on transmission dynamics of meningitis are examined. These findings are based on various fractional parameter values and serve as a control parameter for identifying important disease-control techniques. Finally, the acquired results are graphically displayed to support our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

Data used to support the findings of this study are included within the article. Authors used a set of parameter values whose sources are from the literature as shown in table 1.

References

  1. Asamoah J.K.K., Nyabadza F., Seidu B., Chand M., Dutta H., Mathematical modelling of bacterial meningitis transmission dynamics with control measures, Computational and mathematical methods in medicine (2018)

  2. Ojo M.M.: Mathematical modeling of neisseria meningitidis: a case study of nigeria, Ph.D. thesis, University of Kansas (2019)

  3. Ginsberg, L.: Difficult and recurrent meningitis. J. Neurol. Neurosurg. Psychiatry 75(suppl 1), 116–121 (2004)

    Google Scholar 

  4. Oordt-Speets, A.M., Bolijn, R., van Hoorn, R.C., Bhavsar, A., Kyaw, M.H.: Global etiology of bacterial meningitis: a systematic review and meta-analysis. PloS One 13(6), e0198772 (2018)

    Article  Google Scholar 

  5. Rouphael N.G., Stephens D.S., Neisseria meningitidis: biology, microbiology, and epidemiology, Neisseria meningitidis (2012) 1–20

  6. Agusto, F., Leite, M.: Optimal control and cost-effective analysis of the: Meningitis outbreak in Nigeria. Infect. Disease Model. 4(2019), 161–187 (2017)

    Google Scholar 

  7. Agier, L., Martiny, N., Thiongane, O., Mueller, J.E., Paireau, J., Watkins, E.R., Irving, T.J., Koutangni, T., Broutin, H.: Towards understanding the epidemiology of neisseria meningitidis in the african meningitis belt: a multi-disciplinary overview. Int. J. Infect. Diseases 54, 103–112 (2017)

    Article  Google Scholar 

  8. National Health Service, Treatment of meningitis, Available from: https://www.nhs.uk/conditions/meningitis/treatment/

  9. LaForce F., Konde S.K., Viviani, M.-P. Préziosi, The meningitis vaccine project, Vaccine 25 (2007) A97–A100

  10. Kuznik, A., Iliyasu, G., Lamorde, M., Mahmud, M., Musa, B.M., Nashabaru, I., Obaro, S., Mohammed, I., Habib, A.G.: Cost-effectiveness of expanding childhood routine immunization against neisseria meningitidis serogroups c, w and y with a quadrivalent conjugate vaccine in the African meningitis belt. PloS One 12(11), e0188595 (2017)

    Article  Google Scholar 

  11. Lingani C., Bergeron-Caron C., Stuart J.M., Fernandez K., Djingarey M.H., Ronveaux O., Schnitzler J.C., Perea W.A., Meningococcal meningitis surveillance in the African meningitis belt, 2004–2013, Clinical infectious diseases 61 (suppl_5) (2015) S410–S415

  12. Trotter, C.L., Ramsay, M.E.: Vaccination against meningococcal disease in Europe: review and recommendations for the use of conjugate vaccines. FEMS Microbiol. Rev. 31(1), 101–107 (2007)

    Article  Google Scholar 

  13. C. for Disease Control, Prevention, et al., Meningococcal disease: epidemiology and prevention of vaccine-preventable diseases, The Pink Book: Course Textbook. 201212th ed. Atlanta, GA Centers for Disease Control and Prevention Available at: http://www.cdc.gov/vaccines/pubs/pinkbook/downloads/mening.pdf. Accessed April 26 (2012)

  14. Reingold, A., Hightower, A., Bolan, G., Jones, E., Tiendrebeogo, H., Broome, C., Ajello, G., Adamsbaum, C., Phillips, C., Yada, A.: Age-specific differences in duration of clinical protection after vaccination with meningococcal polysaccharide a vaccine. The Lancet 326(8447), 114–118 (1985)

    Article  Google Scholar 

  15. Hassan-King, M., Wall, R., Greenwood, B.: Meningococcal carriage, meningococcal disease and vaccination. J. Infect. 16(1), 55–59 (1988)

    Article  Google Scholar 

  16. Peter, O.J., Viriyapong, R., Oguntolu, F.A., Yosyingyong, P., Edogbanya, H.O., Ajisope, M.O.: Stability and optimal control analysis of an scir epidemic model. J. Math. Comput. Sci. 10(6), 2722–2753 (2020)

    Google Scholar 

  17. M. Ojo, F. Akinpelu, Lyapunov functions and global properties of seir epidemic model, International journal of Chemistry, Mathematics and Physics 1 (1) (2017)

  18. Ojo, M.M., Gbadamosi, B., Benson, T.O., Adebimpe, O., Georgina, A.: Modeling the dynamics of lassa fever in Nigeria. J. Egyptian Math. Soc. 29(1), 1–19 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peter O.J., Kumar S., Kumari N., Oguntolu F.A., Oshinubi K., Musa R., Transmission dynamics of monkeypox virus: a mathematical modelling approach, Model. Earth Syst. Environ., (2021) 1–12

  20. Peter, O.J., Qureshi, S., Yusuf, A., Al-Shomrani, M., Idowu, A.A.: A new mathematical model of covid-19 using real data from pakistan. Results Phys. 24, 104098 (2021)

    Article  Google Scholar 

  21. Ojo, M., Gbadamosi, B., Olukayode, A., Oluwaseun, O.R.: Sensitivity analysis of dengue model with saturated incidence rate. Open Access Library J 5(03), 1 (2018)

    Google Scholar 

  22. Abioye, A., Ibrahim, M., Peter, O., Amadiegwu, S., Oguntolu, F.: Differential transform method for solving mathematical model of seir and sei spread of malaria 40(1), 197–219 (2018)

    Google Scholar 

  23. Abioye, A.I., Peter, O.J., Ogunseye, H.A., Oguntolu, F.A., Oshinubi, K., Ibrahim, A.A., Khan, I.: Mathematical model of covid-19 in Nigeria with optimal control. Results Phys. 28, 104598 (2021)

    Article  Google Scholar 

  24. Ayoola, T.A., Edogbanya, H.O., Peter, O.J., Oguntolu, F.A., Oshinubi, K., Olaosebikan, M.L.: Modelling and optimal control analysis of typhoid fever. J. Math. Comput. Sci. 11(6), 6666–6682 (2021)

    Google Scholar 

  25. Peter O., Ibrahim M., Oguntolu F., Akinduko O., Akinyemi S., Direct and indirect transmission dynamics of typhoid fever model by differential transform method (2018)

  26. Musa, S.S., Zhao, S., Hussaini, N., Habib, A.G., He, D.: Mathematical modeling and analysis of meningococcal meningitis transmission dynamics. Int. J. Biomath. 13(01), 2050006 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karachaliou A., Conlan A.J., Preziosi M.-P., Trotter C.L., Modeling long-term vaccination strategies with menafrivac in the african meningitis belt, Clinical Infectious Diseases 61 (suppl_5) (2015) S594–S600

  28. Tilahun, G.T.: Modeling co-dynamics of pneumonia and meningitis diseases. Adv. Differ. Equ. 2019(1), 1–18 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peter, O.J., Yusuf, A., Oshinubi, K., Oguntolu, F.A., Lawal, J.O., Abioye, A.I., Ayoola, T.A.: Fractional order of pneumococcal pneumonia infection model with caputo fabrizio operator. Results Phys. 29, 104581 (2021)

    Article  Google Scholar 

  30. Peter O.J., Shaikh A.S., Ibrahim M.O., Nisar K.S., Baleanu D., Khan I., Abioye A.I., Analysis and dynamics of fractional order mathematical model of covid-19 in nigeria using atangana-baleanu operator, Comput. Mater. Continua (2021) 1823–1848

  31. Khan, H., Gómez-Aguilar, J., Alkhazzan, A., Khan, A.: A fractional order hiv-tb coinfection model with nonsingular mittag-leffler law. Math. Methods Appl. Sci. 43(6), 3786–3806 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ahmad, S., Ullah, A., Al-Mdallal, Q.M., Khan, H., Shah, K., Khan, A.: Fractional order mathematical modeling of covid-19 transmission. Chaos, Solitons Fractals 139, 110256 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peter O.J., Transmission dynamics of fractional order brucellosis model using caputo–fabrizio operator, Int. J. Differ. Equ. (2020)

  34. Shaikh, A.A., Qureshi, S.: Comparative analysis of riemann-liouville, caputo-fabrizio, and atangana-baleanu integrals. J. Appl. Math. Comput. Mech. 21(1), 91–101 (2022)

    Article  MathSciNet  Google Scholar 

  35. Yusuf, A., Qureshi, S., Mustapha, U.T., Musa, S.S., Sulaiman, T.A.: Fractional modeling for improving scholastic performance of students with optimal control. Int. J. Appl. Comput. Math. 8(1), 1–20 (2022)

    Article  MathSciNet  Google Scholar 

  36. Arafa A., Khalil M., Sayed A., A non-integer variable order mathematical model of human immunodeficiency virus and malaria coinfection with time delay, Complexity (2019)

  37. Carvalho, A.R., Pinto, C.M., Baleanu, D.: Hiv/hcv coinfection model: a fractional-order perspective for the effect of the hiv viral load. Adv. Differ. Equ. 2018(1), 1–22 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nazeer, M., Hussain, F., Khan, M.I., El-Zahar, E.R., Chu, Y.-M., Malik, M., et al.: Theoretical study of mhd electro-osmotically flow of third-grade fluid in micro channel. Appl. Math. Comput. 420, 126868 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Chu, Y.-M., Shankaralingappa, B., Gireesha, B., Alzahrani, F., Khan, M.I., Khan, S.U.: Combined impact of cattaneo-christov double diffusion and radiative heat flux on bio-convective flow of maxwell liquid configured by a stretched nano-material surface. Appl. Math. Comput. 419, 126883 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Zhao T.-H., Khan M.I., Chu Y.-M., Artificial neural networking (ann) analysis for heat and entropy generation in flow of non-newtonian fluid between two rotating disks, Mathematical Methods Appl. Sci. (2021)

  41. Chu, Y.-M., Nazir, U., Sohail, M., Selim, M.M., Lee, J.-R.: Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fractional 5(3), 119 (2021)

    Article  Google Scholar 

  42. Madhukesh, J., Kumar, R.N., Gowda, R.P., Prasannakumara, B., Ramesh, G., Khan, M.I., Khan, S.U., Chu, Y.-M.: Numerical simulation of aa7072-aa7075/water-based hybrid nanofluid flow over a curved stretching sheet with newtonian heating: a non-fourier heat flux model approach. J. Mole. Liquids 335, 116103 (2021)

    Article  Google Scholar 

  43. Wang, J., Khan, M.I., Khan, W.A., Abbas, S.Z., Khan, M.I.: Transportation of heat generation/absorption and radiative heat flux in homogeneous-heterogeneous catalytic reactions of non-newtonian fluid (oldroyd-b model). Computer Methods Programs Biomed. 189, 105310 (2020)

    Article  Google Scholar 

  44. Khan, M.I., Hayat, T., Waqas, M., Alsaedi, A.: Outcome for chemically reactive aspect in flow of tangent hyperbolic material. J. Mole. Liquids 230, 143–151 (2017)

    Article  Google Scholar 

  45. Hayat, T., Tamoor, M., Khan, M.I., Alsaedi, A.: Numerical simulation for nonlinear radiative flow by convective cylinder. Results Phys. 6, 1031–1035 (2016)

    Article  Google Scholar 

  46. Qayyum, S., Khan, M.I., Hayat, T., Alsaedi, A.: Comparative investigation of five nanoparticles in flow of viscous fluid with joule heating and slip due to rotating disk. Physica B: Condensed Matter 534, 173–183 (2018)

    Article  Google Scholar 

  47. Khan, M.I., Qayyum, S., Kadry, S., Khan, W., Abbas, S.: Irreversibility analysis and heat transport in squeezing nanoliquid flow of non-newtonian (second-grade) fluid between infinite plates with activation energy. Arabian J. Sci. Eng. 45(6), 4939–4947 (2020)

    Article  Google Scholar 

  48. Arqub, O.A., Maayah, B.: Numerical solutions of integrodifferential equations of fredholm operator type in the sense of the Atangana-baleanu fractional operator. Chaos Solitons Fractals 117, 117–124 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Arqub, O.A., Al-Smadi, M.: Atangana-baleanu fractional approach to the solutions of bagley-torvik and painlevé equations in hilbert space. Chaos Solitons Fractals 117, 161–167 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Momani S., Abu Arqub O., Maayah B., Piecewise optimal fractional reproducing kernel solution and convergence analysis for the atangana–baleanu–caputo model of the lienard’s equation, Fractals 28 (08) (2020) 2040007

  51. Momani, S., Maayah, B., Arqub, O.A.: The reproducing kernel algorithm for numerical solution of van der pol damping model in view of the atangana-baleanu fractional approach. Fractals 28(08), 2040010 (2020)

    Article  MATH  Google Scholar 

  52. Choi, S., Kang, B., Koo, N.: Stability for caputo fractional differential systems. Abstract Appl. Anal. 2014, 631419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Geng X., Katul G.G., Gerges F., Bou-Zeid E., Nassif H., Boufadel M.C., A kernel-modulated sir model for covid-19 contagious spread from county to continent 118 (21) (2021). https://doi.org/10.1073/pnas.2023321118.

  54. Castillo-Chavez C., Blower S., Driessche P., Kirschner D., Yakubu A., Mathematical approaches for emerging and reemerging infectious diseases: models method and theory (2002) 84

  55. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Thermal Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  57. Qureshi, S., Yusuf, A.: Modeling chickenpox disease with fractional derivatives: from caputo to atangana-baleanu. Chaos Solitons Fractals 122, 111–118 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Khan, M., Ullah, S., Farooq, M.: A new fractional model for tuberculosis with relapse via atangana baleanu derivative. Chaos Solitons Fractals 116, 227–238 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Qureshi, S., Atangana, A.: Mathematical analysis of dengue fever outbreak by novel fractional operators with field data. Physica A Stat. Mech. Appl. 526, 121127 (2019)

    Article  MathSciNet  Google Scholar 

  60. Central Intelligence Agency, The world factbook, Available from: https://www.cia.gov/the-world-factbook/countries/nigeria/

  61. Changpin L., Fanhai Z., Numerical methods for fractional calculus 24 (2015)

  62. Jajarmi A., Baleanu D., A new fractional analysis on the interaction of hiv with cd4+ t-cells, Chaos, Solitons and Fractals 113 (2018) 221–229. https://doi.org/10.1016/j.chaos.2018.06.009.

  63. Baleanu D., Jajarmi A., Hajipour M., On the nonlinear dynamical systems within the generalized fractional derivatives with mittag-leffler kernel. Nonlinear dynamics, Nonlinear dynamics 94 (1) (2018) 397–414. https://doi.org/10.1016/j.chaos.2018.06.009.

Download references

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

OJP conceived the idea, model formulation, OJP AF, MMO,SK,NK and FAO Writing, qualitative analysis, editing, proof reading

Corresponding author

Correspondence to Olumuyiwa James Peter.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, O.J., Yusuf, A., Ojo, M.M. et al. A Mathematical Model Analysis of Meningitis with Treatment and Vaccination in Fractional Derivatives. Int. J. Appl. Comput. Math 8, 117 (2022). https://doi.org/10.1007/s40819-022-01317-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01317-1

Keywords

Navigation