Skip to main content

Advertisement

Log in

Impacts of Media Awareness on a Stage Structured Epidemic Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Nowadays the nature of the emerging infectious diseases is becoming very complicated. Diseases spread among human beings through different stages and also initially proper control measures are hardly available to prevent these diseases. In this article, we propose a stage structured epidemic model incorporating the media awareness and assuming that the disease can be transmitted only among the mature populations. The model is analyzed by means of its different equilibria and their stability. The global stability of both the infection free and infected steady states are proved under some parametric conditions. The existence of the transcritical bifurcation is also examined. Further to manage the outspread of the disease, an optimal control problem is formulated considering media awareness as a control parameter. Then the control problem is solved analytically by applying the Pontryagin’s maximum principle. The influence of the media awareness on the disease dynamics and the analytical findings of this work are illustrated through several numerical simulations. Finally, this article comes to an end with a brief discussion on the whole work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Berhe, H.W., Makinde, O.D., Theuri, D.M.: Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis. Appl. Math. Comput. 347, 903–921 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Berhe, H.W., Makinde, O.D., Theuri, D.M.: Parameter estimation and sensitivity analysis of dysentery diarrhea epidemic model. J. Appl. Math. (2019)

  3. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)

    MATH  Google Scholar 

  4. Buonomo, B., Vargas-De-León, C.: Global stability for an HIV-1 infection model including an eclipse stage of infected cells. J. Math. Anal. Appl. 385(2), 709–720 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Cai, L.M., Li, X.Z., Ghosh, M.: Global stability of a stage-structured epidemic model with a nonlinear incidence. Appl. Math. Comput. 214(1), 73–82 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Castillo-Chavez, C., Feng, Z., Huang, W.: On the computation of \(R_{0}\) and its role on global stability. In: Mathematical Approaches for Emerging and Reemerging Infectious Disease: An introduction, vol. 125, pp. 229–250. Springer, Berlin (2002)

  7. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272–1296 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Cui, J., Sun, Y., Zhu, H.: The impact of media on the control of infectious diseases. J. Dyn. Diff. Equ. 20(1), 31–53 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases, Model Building, Analysis and Interpretation. Wiley, Chichester (2000)

    MATH  Google Scholar 

  11. Dubey, B., Dubey, P., Dubey, U.S.: Role of media and treatment on an SIR model. Nonlinear Anal. Model. Control 21(2), 185–200 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Dubey, B., Dubey, P., Dubey, U.S.: Modeling the intracellular pathogen-immune interaction with cure rate. Commun. Nonlinear. Sci. Numer. Simul. 38, 72–90 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Freedman, H.I., Ruan, S., Tang, M.: Uniform persistence and flows near a closed positively invariant set. J. Dyn. Diff. Equ. 6(4), 583–600 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Funk, S., Gilad, E., Watkins, C., Jansen, V.A.: The spread of awareness and its impact on epidemic outbreaks. Proc, Nat. Acad. Sci. 106(16), 6872–6877 (2009)

    MATH  Google Scholar 

  15. Guo, H., Li, M.Y.: Global dynamics of a staged progression model for infectious diseases. Math. Biosci. Eng. 3(3), 513 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Kar, T.K., Jana, S.: A theoretical study on mathematical modelling of an infectious disease with application of optimal control. BioSystems 111(1), 37–50 (2013)

    Google Scholar 

  18. Kar, T.K., Jana, S.: Application of three controls optimally in a vector-borne disease-a mathematical study. Commun. Nonlinear. Sci. Numer. Simul. 18(10), 2868–2884 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Kar, T.K., Jana, S., Ghorai, A.: Effect of isolation in an infectious disease. Int. J. Ecol. Econ. Stat. 29(2), 87–106 (2013)

    Google Scholar 

  20. Kar, T.K., Nandi, S.K., Jana, S., Mandal, M.: Stability and bifurcation analysis of an epidemic model with the effect of media. Chaos Sol. Fract. 120, 188–199 (2019)

    MathSciNet  Google Scholar 

  21. Keeling, M.J., Rohani, P.: Modeling infectious diseases in humans and animals. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  22. Kermack, W.O., McKendrick, A.G.: Contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927)

    MATH  Google Scholar 

  23. Kiss, I.Z., Cassell, J., Recker, M., Simon, P.L.: The impact of information transmission on epidemic outbreaks. Math. Biosci. 225(1), 1–10 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Laarabi, H., Abta, A., Hattaf, K.: Optimal control of a delayed SIRS epidemic model with vaccination and treatment. Acta Biotheor. 63(2), 87–97 (2015)

    Google Scholar 

  25. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Mathematical and Computational Biology Series. Chapman & Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  26. Li, M.Y., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 1070–1083 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Li, J., Ma, Z., Zhang, F.: Stability analysis for an epidemic model with stage structure. Nonlinear Anal. Real World Appl. 9(4), 1672–1679 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Li, X., Wang, W.: A discrete epidemic model with stage structure. Chaos Sol. Fract. 26(3), 947–958 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Li, Y., Cui, J.: The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear. Sci. Numer. Simul. 14(5), 2353–2365 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Liu, Y., Cui, J.A.: The impact of media coverage on the dynamics of infectious disease. Int. J. Biomath. 1(01), 65–74 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Liu, W., Zheng, Q.: A stochastic SIS epidemic model incorporating media coverage in a two patch setting. Appl. Math. Comput. 262, 160–168 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Lukes, D.L.: Differential Equations: Classical to Controlled. Academic Press, New York (1982)

    MATH  Google Scholar 

  33. Martcheva, M.: An Introduction to Mathematical Epidemiology. Springer, New York (2015)

    MATH  Google Scholar 

  34. Martin Jr., R.H.: Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45(2), 432–454 (1974)

    MathSciNet  MATH  Google Scholar 

  35. Mathur, K.S., Narayan, P.: Dynamics of an \(SVEIRS\) epidemic model with vaccination and saturated incidence rate. Int. J. Appl. Comput. Math. 4(5), 118 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Misra, A.K., Sharma, A., Shukla, J.B.: Stability analysis and optimal control of an epidemic model with awareness programs by media. BioSystems 138, 53–62 (2015)

    Google Scholar 

  37. Nandi, S.K., Jana, S., Mandal, M., Kar, T.K.: Complex dynamics and optimal treatment of an epidemic model with two infectious diseases. Int. J. Appl. Comput. Math. 5(2), 29 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Okosun, K.O., Ouifki, R., Marcus, N.: Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. BioSystems 106(2–3), 136–145 (2011)

    Google Scholar 

  39. Okosun, K.O., Makinde, O.D.: Mathematical model of childhood diseases outbreak with optimal control and cost effectiveness strategy. Int. J. Comput. Sci. Math. 10(2), 115–128 (2019)

    MathSciNet  Google Scholar 

  40. Pei, Y., Chen, M., Liang, X., Xia, Z., Lv, Y., Li, C.: Optimal control problem in an epidemic disease SIS model with stages and delays. Int. J. Biomath. 9(05), 1650072 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Maximum Principle. The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    MATH  Google Scholar 

  42. Samanta, S., Rana, S., Sharma, A., Misra, A.K., Chattopadhyay, J.: Effect of awareness programs by media on the epidemic outbreaks: a mathematical model. Appl. Math. Comput. 219(12), 6965–6977 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Tchuenche, J.M., Dube, N., Bhunu, C.P., Smith, R.J., Bauch, C.T.: The impact of media coverage on the transmission dynamics of human influenza. BMC Public Health. 11(1), S5 (2011)

    Google Scholar 

  44. Thieme, H.R.: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations. Math. Biosci. 111(1), 99–130 (1992)

    MathSciNet  MATH  Google Scholar 

  45. Tian, X., Xu, R.: Stability analysis of a delayed SIR epidemic model with stage structure and nonlinear incidence. Discret. Dyn. Nat. Soc. 2009 (2009)

  46. Tilahun, G.T., Makinde, O.D., Malonza, D.: Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis. App. Math. Comput. 316, 438–459 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    MathSciNet  MATH  Google Scholar 

  48. Xiao, Y., Chen, L.: On an SIS epidemic model with stage structure. J. Syst. Sci. Complex. 16(2), 275–288 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Zaman, G., Kang, Y.H., Jung, I.H.: Stability analysis and optimal vaccination of an SIR epidemic model. BioSystems 93, 240–249 (2008)

    Google Scholar 

  50. Zhang, T., Liu, J., Teng, Z.: Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure. Nonlinear Anal. Real World Appl. 11(1), 293–306 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research of Anupam Khatua is financially supported by Department of Science and Technology-INSPIRE, Government of India (No. DST/INSPIRE Fellowship/2016/IF160667, dated: 21st September, 2016). We are grateful to the anonymous reviewers and editors for their valuable comments and useful suggestions to improve the quality and presentation of the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatua, A., Kar, T.K. Impacts of Media Awareness on a Stage Structured Epidemic Model. Int. J. Appl. Comput. Math 6, 152 (2020). https://doi.org/10.1007/s40819-020-00904-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00904-4

Keywords

Mathematics Subject Classification

Navigation