Skip to main content
Log in

Laguerre Wavelets Exact Parseval Frame-based Numerical Method for the Solution of System of Differential Equations

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this study, the Laguerre wavelets exact Parseval frame is introduced and proposed an effective numerical algorithm to get a numerical solution for the system of differential equations based on the Laguerre wavelets exact Parseval frame. This algorithm includes the collocation method and truncated Laguerre wavelet frames. Here, we reduce the system of differential equations into a set of algebraic equations which are having unknown Laguerre wavelet frame coefficients. Some numerical examples are given and compared to the numerical solution by the present method with the Adomian decomposition method. Moreover, the modeling of the spreading of a non-fatal disease in a population, which represents a system of an ordinary differential equation is numerically solved by the proposed technique and compared with the Adomina decomposed method. The obtained results reveal that the present algorithm provides a good approximation than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akinfenwaa, O.A., Jator, S.N., Yaoa, N.M.: Continuous block backward differentiation formula for solving stiff ordinary differential equations. Comput. Math Appl. 65, 996–1005 (2013)

    MathSciNet  Google Scholar 

  2. Benhammouda, B., Vazquez-Leal, H., Hernandez-Martinez, L.: Modified differential transform method for solving the model of pollution for a system of lakes. Discrete Dyn. Nat. Soc. (2014). https://doi.org/10.1155/2014/645726

    Article  MATH  Google Scholar 

  3. Biazar, J.: Solution of the epidemic model by Adomian decomposition method. Appl. Math. Comput. 173, 1101–1106 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Biazar, J., Hosseini, K.: An effective modification of Adomian decomposition method for solving Emden–Fowler type systems. Natl. Acad. Sci. Lett. 40, 285–290 (2017)

    MathSciNet  Google Scholar 

  5. Darvishi, M.T., Khani, F., Soliman, A.A.: The numerical simulation for stiff systems of ordinary differential equations. Comput. Appl. Math. 54, 1055–1063 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Gao, W., Rezazadeh, H., Pinar, Z., Baskonus, H.M., Sarwar, S., Ye, G.: Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique. Opt. Quant. Electron. (2020). https://doi.org/10.1007/s11082-019-2162-8

    Article  Google Scholar 

  7. Gao, W., Veeresha, P., Prakasha, D.G., Baskonus, H.M., Yel, G.: A powerful approach for fractional Drinfeld–Sokolov–Wilson equation with Mittag–Leffler law. Alex. Eng. J. (2019). https://doi.org/10.1016/j.aej.2019.11.002

    Article  Google Scholar 

  8. Hadi, R., Vahidi, J., Zafar, A., Bekir, A.: The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity. Int. J. Nonlinear Sci. Numer. Simul. (2019). https://doi.org/10.1515/ijnsns-2019-0064

    Article  Google Scholar 

  9. Hadi, R., Korkmaz, A., Eslami, M., Mirhosseini-Alizamini, S.M.: A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method. Opt. Quant. Electron. (2019). https://doi.org/10.1007/s11082-019-1801-4

    Article  Google Scholar 

  10. Hehenberger, M., Brandas, E., Elander N.: Weyl’s theory for a system of coupled second order differential equations. In: Proceedings of the International Symposium on Atomic, Molecular, and Solid-state Theory, Collision Phenomena, and Computational Methods, vol. 14 (S12), pp. 67–71 (1978)

  11. Hehenberger, M., Brandas, E., Elander, N.: Matrix free methods for stiff systems of ODE’s. SIAM J. Numer. Anal. 23(3), 610–638 (1986)

    MathSciNet  Google Scholar 

  12. Heil, C.: A Basis Theory Primer. Springer, Landon (1988)

    MATH  Google Scholar 

  13. Ngwane, F.F., Jator, S.N.: Block hybrid second derivative method for stiff systems. Int. J. Pure Appl. Math. 80(4), 543–559 (2012)

    MATH  Google Scholar 

  14. Ongun, M.Y.: The Laplace Adomian Decomposition Method for solving a model for HIV infection of CD4+ T cells. Math. Comput. Model. 53, 597–603 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Ozturk, Y.: Numerical solution of systems of differential equations using operational matrix method with Chebyshev polynomials. J. Taibah Univ. Sci. 12(2), 155–162 (2018)

    Google Scholar 

  16. Park, C., et al.: Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic–quintic. Alex. Eng. J. (2020). https://doi.org/10.1016/j.aej.2020.03.046

    Article  Google Scholar 

  17. Prakasha, D.G., Veeresha, P.: Analysis of lakes pollution model with Mittag–Leffler kernel. J. Ocean Eng. Sci. (2020). https://doi.org/10.1016/j.joes.2020.01.004

    Article  Google Scholar 

  18. Raza, N., Afzal, U., Butt, A.R., Rezazadeh, H.: Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities. Opt. Quant. Electron. (2019). https://doi.org/10.1007/s11082-019-1813-0

    Article  Google Scholar 

  19. Shawagfeh, N., Kaya, D.: Comparing numerical methods for the solutions of systems of ordinary differential equations. Appl. Math. Lett. 17, 323–328 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Shiralashetti, S.C., Kumbinarasaiah, S.: Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems. Alex. Eng. J. 57, 2591–2600 (2018)

    Google Scholar 

  21. Shiralashetti, S.C., Kumbinarasaiah, S.: Theoretical study on continuous polynomial wavelet bases through wavelet series collocation method for nonlinear lane-Emden type equations. Appl. Math. Comput. 315, 591–602 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Shiralashetti, S.C., Kumbinarasaiah, S.: Cardinal B-spline wavelet-based numerical method for the solution of generalized Burgers–Huxley equation. Int. J. Appl. Comput. Math. 4, 73 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Shiralashetti, S.C., Kumbinarasaiah, S.: Some results on haar wavelets matrix through linear algebra. Wavelets Linear Algebra 4(2), 49–59 (2017)

    MATH  Google Scholar 

  24. Shiralashetti, S.C., Kumbinarasaiah, S., Hoogar, B.S.: Hermite wavelet-based numerical method for the solution of linear and nonlinear delay differential equations. Int. J. Eng. Sci. Math. 6(8), 71–79 (2017)

    Google Scholar 

  25. Shiralashetti, S.C., Kumbinarasaiah, S.: New generalized operational matrix of integration to solve nonlinear singular boundary value problems using Hermite wavelets. Arab J. Basic Appl. Sci. 26(1), 385–396 (2019)

    Google Scholar 

  26. Shiralashetti, S.C., Kumbinarasaiah, S.: CAS wavelets analytic solution and Genocchi polynomials numerical solutions for the integral and integrodifferential equations. J. Interdiscip. Math. 22(3), 201–218 (2019)

    Google Scholar 

  27. Shiralashetti, S.C., Kumbinarasaiah, S.: Hermite wavelets method for the numerical solution of linear and nonlinear singular initial and boundary value problems. Comput. Methods Differ. Equ. 7(2), 177–198 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Shiralashetti, S.C., Kumbinarasaiah, S.: Some results on shannon wavelets and wavelets frames. Int. J. Appl. Comput. Math. 5, 10 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Sweilama, N.H., Khaderb, M.M.: Exact solutions of some coupled nonlinear partial differential equations using the homotopy perturbation method. Comput. Math Appl. 58, 2134–2141 (2009)

    MathSciNet  Google Scholar 

  30. Veeresha, P., Prakasha, D.G.: Solution for fractional generalized Zakharov equations with Mittag–Leffler function. Results Eng. (2020). https://doi.org/10.1016/j.rineng.2019.100085

    Article  Google Scholar 

  31. Widatalla, S., Koroma, M.A.: Approximation algorithm for a system of Pantograph equations. J. Appl. Math. (2012). https://doi.org/10.1155/2012/714681

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, X.Y., Xia, J.L.: Two low accuracy methods for stiff systems. Appl. Math. Comput. 123, 141–153 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumbinarasaiah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiralashetti, S.C., Kumbinarasaiah, S. Laguerre Wavelets Exact Parseval Frame-based Numerical Method for the Solution of System of Differential Equations. Int. J. Appl. Comput. Math 6, 101 (2020). https://doi.org/10.1007/s40819-020-00848-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00848-9

Keywords

Mathematics Subject Classification

Navigation